Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Copyright © 1993/4502-0147\$03.00/0

Pharmacological Reviews

Copyright © 1993 by The American Society for Pharmacology and Experimental Therapeutics
 Cardiac a₁-Adrenoceptors: An Overview*

ANDRÉ TERZIC,^{1,+} MICHEL PU **Cardiac** α_1 **-Adrenoceptors: An Overview***
ANDRE TERZIC,^{1,†} MICHEL PUCEAT,² GUY VASSORT,² AND STEPHEN M. VOGEL³
¹Division of Cardiovascular Diseases, Department of Internal Medicine, and Department of Pharmaco

CAPCIAC α_1 **-AGPENOCEDUOPS: AN UVEPVIEW**
¹Division of Cardiovascular Diseases, Department of Internal Medicine, and Department of Pharmacology, Mayo Clinic, Mayo Foundation,
¹Division of Cardiovascular Diseases, Dep *Rochester, Minnesota, 2Laboratoire, Minnesota, 2Cardiovascular Diseases, Department of Internal Medicine, and Department of Pharmacology, Mayo Clinic, Mayo Foundation,
Rochester, Minnesota, ²Laboratoire de Physiologie C* ANDRÉ TERZIC,^{1,†} MICHEL PUCÉAT,² GUY VASSORT,² AND STEPHEN M. VOGEL³
3Department of Internal Medicine, and Department of Pharmacology, Mayo Clinic, Mayo F
3Departments of Anesthesiology and Pharmacology, College of ³Departments of Anesthesiology and Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois

The sympathetic nervous system is a major regulator conductances, cytosolic ionic activities, cellular meta
of myocardial function (for review, see Levy and Martin, conductances, cytosolic ionic activities, cellular meta
 or myocardiac muscle. However, during the last two decades, and force of contraction. In addition of through which catecholamines exert their actions on physiological or pathophysiological conditions, α_1 -adrenoceptors 1989). For many years, β -adrenoceptors had been considerable.

ered as the exclusive adrenergic receptor population affecting different electromechanical processes, under

through which catecholamines exert their actio ered as the exclusive adrenergic receptor population antecting unterefit electromechanical processes, under
through which catecholamines exert their actions on physiological or pathophysiological conditions, α_1 -adre-

I. Introduction

The sympathetic nervous system is a major regulator

The sympathetic nervous system is a major regulator

myocardial function (for review, see Levy and Martin, conductances, cytosolic ionic activities, cel **I. Introduction**
 I. Introduction
 I. Introduction
 I. Introduction
 I. Introduction
 I. Introduction
 ISOS)
 I. Introduction
 ISOS)
 ISOS). For many years, β -adrenoceptors had been consid-
 ISOS). 1. Introduction

1989). For many years, β -adrenoceptors had been consid-

1989). For many years, β -adrenoceptors had been consid-

1989). For many years, β -adrenoceptors had been consid-

1989). For many years, The sympathetic nervous system is a major regulator
of myocardial function (for review, see Levy and Martin,
1989). For many years, β -adrenoceptors had been consid-
lism, and the Ca^{2+} sensitivity of contractile prot

Fundate muscle. However, during the last two decades, noceptors could regulate the cardiac rhythm, conduction, -adrenoceptors have also been identified in myocardial and force of contraction. In addition to these acute su α_1 -adrenoceptors have also been identified in myocardial and force of contraction. In addition to these acute tissue. Selective stimulation of animal and human α_1 - actions, α_1 -adrenoceptors also mediate severa a Grant-in-Aid from the American Heart Association (Minnesota Affiliate).

A. T. is a recipient of the Award for Careers in Clinical Pharmacology from

a Grant-in-Aid from the American Heart Association (Minnesota Affilia sue. Selective stimulation of animal and numan α_1 -

* Part of the work presented in this review was conducted under the ausp

T. is a recipient of the Award for Careers in Clinical Pharmacology from the

Strant-in-Aid

148 TERZIC

effects which include the expression of genes responsible

for cell growth.

The purpose of recent investigations has been to un-

cover the mechanisms that underlie the α_1 -adrenoceptoreffects which include the expression of genes respo
for cell growth.
The purpose of recent investigations has been
cover the mechanisms that underlie the α_1 -adrenoce
mediated regulation of cellular processes in the effects which include the expression of genes responsible
for cell growth.
The purpose of recent investigations has been to un-
cover the mechanisms that underlie the α_1 -adrenoceptor-
mediated regulation of cellular p for cell growth.
The purpose of recent investigations has been to un
cover the mechanisms that underlie the α_1 -adrenergic
mediated regulation of cellular processes in the heart
Although it has been described that $\alpha_$ The purpose of recent investigations has been to uncover the mechanisms that underlie the α_1 -adrenoceptor-
mediated regulation of cellular processes in the heart.
Although it has been described that α_1 -adrenergic cover the mechanisms that underlie the α_1 -adrenoceptor-
mediated regulation of cellular processes in the heart.
Although it has been described that α_1 -adrenergic stim-
ulation modulates cardiac contractility in a mediated regulation of cellular processes in the heart.
Although it has been described that α_1 -adrenergic stimulation modulates cardiac contractility in a way that differs from conventional cardiotonic agents (Pucéat regulation modulates cardiac contractility in a way that

differs from conventional cardiotonic agents (Pucéat et sub-

al., 1992), many questions regarding the α_1 -adrenergic of the

regulation of heart function remai

differs from conventional cardiotonic agents (Pucéat et al., 1992), many questions regarding the α_1 -adrenergic regulation of heart function remain unresolved.
The following overview provides an update relative to the al., 1992), many questions regarding the α_1 -adrenergic regulation of heart function remain unresolved.
The following overview provides an update relative to che α_1 -adrenoceptor-mediated effects on cardiac tissue. regulation of heart function remain unresolved.
The following overview provides an update relative to
the α_1 -adrenoceptor-mediated effects on cardiac tissue.
It is not intended to be exhaustive, and the interested
rea The following overview provides an update relative to
the α_1 -adrenoceptor-mediated effects on cardiac tissue.
It is not intended to be exhaustive, and the interested
reader is referred to earlier presentations of this the α_1 -adrenoceptor-mediated effects on cardiac tissue.
It is not intended to be exhaustive, and the interested
reader is referred to earlier presentations of this subject
for more detailed information (Brückner et al reader is referred to earlier presentations of this subject
for more detailed information (Brückner et al., 1985;
Osnes et al., 1985; Benfey, 1987; Nawrath, 1989; Endoh,
1991; Rosen et al., 1991). Osnes et al., 1985; Benfey, 1987; Nawrath, 1989; Endoh, 1991; Rosen et al., 1991).
II. Characterization of Myocardial α_1 -

Adrenoceptors

I. Characterization of Myocardial α_1
Adrenoceptors
A. Demonstration, Species Differences, and
Developmental Changes of Cardiac α_1 -Adrenocept **II. Characterization of Myocardial** α_1 **-**
Adrenoceptors
*A. Demonstration, Species Differences, and
Developmental Changes of Cardiac* α_1 -*Adrenocepto*
The unequivocal identification of myocardial α

Adrenoceptors

Demonstration, Species Differences, and

velopmental Changes of Cardiac α_1 -Adrenoceptors

The unequivocal identification of myocardial α_1 -ad

cceptors was made during the last decade, when inv A. Demonstration, Species Differences, and
Developmental Changes of Cardiac α_1 -Adrenoceptors
The unequivocal identification of myocardial α_1 -adr
noceptors was made during the last decade, when inve
tigators were a A. Demonstration, species Differences, and
Developmental Changes of Cardiac α_1 -Adrenoceptors b
The unequivocal identification of myocardial α_1 -adre-
noceptors was made during the last decade, when inves-
tigators Developmental Changes of Caralac α_1 -Aarenoceptors

The unequivocal identification of myocardial α_1 -adre-

moceptors was made during the last decade, when inves-

tigators were able to label these receptors with sp The unequivocal identification of myocardial α_1 -adre-
noceptors was made during the last decade, when inves-
tigators were able to label these receptors with specific
radioligands and subsequently to isolate and clone noceptors was made during the last decade, when invertigators were able to label these receptors with spectral
or radioligands and subsequently to isolate and clone
receptor molecule. In the late 1970s, it was demonstrat
 drows were able to laber these receptors with specific
radioligands and subsequently to isolate and clone the
receptor molecule. In the late 1970s, it was demonstrated
that a tritiated α -adrenoceptor antagonist ([³H] receptor molecule. In the late 1970s, it was demonstrated
that a tritiated α -adrenoceptor antagonist ([³H]dihy-
droergocryptine) binds specifically and with high affinity
to a membrane fraction derived from myocardia that a tritiated α -adrenoceptor antagonist (α Hjdniy-droergocryptine) binds specifically and with high affinity to a membrane fraction derived from myocardial multicellular preparations (rat heart: Williams and Lefk to a membrane fraction derived from myocardial multi-
cellular preparations (rat heart: Williams and Lefkowitz,
1978; Guicheney et al., 1978; rabbit heart: Schümann
and Brodde, 1979). The tritiated ligand could be dis-
pl cellular preparations (rat heart: Williams and Lefkowitz, cellular preparations (rat heart: Williams and Lefkowitz, 1978; Guicheney et al., 1978; rabbit heart: Schümann add Brodde, 1979). The tritiated ligand could be dishabled from specific membrane-binding sites by unlabled $\$ 1978; Guicheney et al., 1978; rabbit heart: Schümann
and Brodde, 1979). The tritiated ligand could be dis-
placed from specific membrane-binding sites by unla-
beled α -adrenoceptor agonists and antagonists. More
recent and Brodde, 1979). The tritiated ligand could be oplaced from specific membrane-binding sites by un beled α -adrenoceptor agonists and antagonists. M recently, α -adrenoceptors also have been demonstratin isolated car placed from specific membrane-binding sites by unla-
beled α -adrenoceptor agonists and antagonists. More all
recently, α -adrenoceptors also have been demonstrated B
in isolated cardiomyocytes, a pure myocardial pr beled α -adrenoceptor
recently, α -adrenocep
in isolated cardiomyo
tion free of any vascu
and Brunton, 1986).
It was demonstrate cently, α -adrenoceptors also have been demonstrate
isolated cardiomyocytes, a pure myocardial prepar-
on free of any vascular or neuronal elements (Buxtd
d Brunton, 1986).
It was demonstrated, using α_1 -subtype-sele

in isolated cardiomyocytes, a pure myocardial preparation free of any vascular or neuronal elements (Buxton and Brunton, 1986).

It was demonstrated, using α_1 -subtype-selective radi-

oligands (e.g., [³H]prazosin, [tion free of any vascular or neuronal elements (Buxt
and Brunton, 1986).
It was demonstrated, using α_1 -subtype-selective ra
oligands (e.g., [³H]prazosin, [¹²⁵I]IBE 2254), that cardi
 α -adrenergic binding sites b and Brunton, 1986).

It was demonstrated, using α_1 -subtype-selective radi-

begands (e.g., [³H]prazosin, [¹²⁵I]IBE 2254), that cardiac
 α -adrenergic binding sites belong to the α_1 -type (Stein-

berg and Bil It was demonstrated, using α_1 -subtype-selective
oligands (e.g., [³H]prazosin, [¹²⁵I]IBE 2254), that c
 α -adrenergic binding sites belong to the α_1 -type (
berg and Bilezikian, 1982; Mukherjee et al., 1983).
t α -adrenergic binding sites belong to the α_1 -type (Steinberg and Bilezikian, 1982; Mukherjee et al., 1983). With the aid of the photoaffinity ligand $[^{125}]$ arylazidoprazosin, Terman and Insel (1986) identified the the aid of the photoaffinity ligand $[1^{25}]$ ary lazidoprazo-
sin, Terman and Insel (1986) identified the α_1 -adreno-
ceptor of rat cardiomyocytes as a 77-kDa protein.
The density of α_1 -adrenoceptors varies with sp rg and Bilezikian, 1982; Mukherjee et al., 1983). With
e aid of the photoaffinity ligand $[^{125}]$ arylazidoprazo-
n, Terman and Insel (1986) identified the α_1 -adreno-
ptor of rat cardiomyocytes as a 77-kDa protein.
Th

the aid of the photoaffinity ligand $[{}^{125}]$ arylazidoprazo-
sin, Terman and Insel (1986) identified the α_1 -adreno-
ceptor of rat cardiomyocytes as a 77-kDa protein.
The density of α_1 -adrenoceptors varies with sp ceptor of rat cardiomyocytes as a 77-kDa protein.
The density of α_1 -adrenoceptors varies with species.
Rat and rabbit myocardia possess a high density of adrenoceptor-binding sites when compared with or species. The d The density of α_1 -adrenoceptors varies with species.

Rat and rabbit myocardia possess a high density of α_1 -

adrenoceptor-binding sites when compared with other

species. The density of binding sites in sarcolemm adrenoceptor-binding sites when compared with other
species. The density of binding sites in sarcolemma-
enriched membrane fractions of rat, rabbit, dog, and
feline hearts is 167, 191, 55, and 15 fmol/mg proteins,
respecti adrenoceptor-binding sites when compared with oth species. The density of binding sites in sarcolemm
enriched membrane fractions of rat, rabbit, dog, an
feline hearts is 167, 191, 55, and 15 fmol/mg protein
respectively (M species. The density of binding sites in sarcolemma-
enriched membrane fractions of rat, rabbit, dog, and
feline hearts is 167, 191, 55, and 15 fmol/mg proteins,
respectively (Mukherjee et al., 1983). Buxton and Brun-
ton enriched membrane fractions of rat, rabbit, dog, and trifeline hearts is 167, 191, 55, and 15 fmol/mg proteins, IP
respectively (Mukherjee et al., 1983). Buxton and Brun-
ton (1986), using [³H]prazosin as a ligand, esti

ET AL.
 α_1 -adrenoceptors is comparable to the density of β_1 -

adrenoceptors (33/ μ m²) on rat cardiomyocytes (Buxton ET AL.
 α_1 -adrenoceptors is comparable to the density of β_1 -

adrenoceptors (33/ μ m²) on rat cardiomyocytes (Buxton

and Brunton, 1985b). In addition, Endoh et al. (1991) ET AL.
 α_1 -adrenoceptors is comparable to the density of β_1 -

adrenoceptors (33/ μ m²) on rat cardiomyocytes (Buxton

and Brunton, 1985b). In addition, Endoh et al. (1991)

showed that the ratio of α_1 - to α_1 -adrenoceptors is comparable to the density of β_1 -
adrenoceptors (33/ μ m²) on rat cardiomyocytes (Buxton
and Brunton, 1985b). In addition, Endoh et al. (1991)
showed that the ratio of α_1 - to β -recepto α_1 -adrenoceptors is comparable to the density of β_1 -
adrenoceptors (33/ μ m²) on rat cardiomyocytes (Buxton
and Brunton, 1985b). In addition, Endoh et al. (1991)
showed that the ratio of α_1 - to β -recepto adrenoceptors (33/ μ m²) on rat cardiomyocytes (Buxton
and Brunton, 1985b). In addition, Endoh et al. (1991)
showed that the ratio of α_1 - to β -receptors was on average
5-fold larger in the rat than in the rabbit and Brunton, 1985b). In addition, Endoh et al. (1
showed that the ratio of α_1 - to β -receptors was on ave
5-fold larger in the rat than in the rabbit or dog. Alth
the number of α_1 -adrenoceptors varies between sp showed that the ratio of α_1 - to β -receptors was on average
5-fold larger in the rat than in the rabbit or dog. Although
the number of α_1 -adrenoceptors varies between species
no significant difference in the den 5-fold larger in the rat than in the rabbit or dog. Although
the number of α_1 -adrenoceptors varies between species,
no significant difference in the density of $[^{3}H]$ prazosin-
binding sites was found between the le the number of α_1 -adrenoceptors varies between species,
no significant difference in the density of $[^3H]$ prazosin-
binding sites was found between the left ventricular
subepicardium or subendocardium and the right ven no significant difference in the density of [³H]prazosin-
binding sites was found between the left ventricular
subepicardium or subendocardium and the right ventricle
of the rat heart (Muntz et al., 1985). However, in s subepicardium or subendocardium and the right ventricle
of the rat heart (Muntz et al., 1985). However, in several
species ventricular tissue possesses a higher density of
 α_1 -adrenoceptors than does the atrium (Steinf 1992a). bepourded the rat heart (Muntz et al., 1985). However, in several
ecies ventricular tissue possesses a higher density of
-adrenoceptors than does the atrium (Steinfath et al.,
92a).
Developmental changes in the density of

species ventricular tissue possesses a higher density of α_1 -adrenoceptors than does the atrium (Steinfath et al., 1992a).

Developmental changes in the density of myocardial α_1 -adrenoceptors were observed in rabbi α_1 -adrenoceptors than does the atrium (Steinfath et al., 1992a).

Developmental changes in the density of myocardial α_1 -adrenoceptors were observed in rabbit, rat, and dog

hearts. In all three species studied, $\$ 1992a).

Developmental changes in the density of myocardial α_1 -adrenoceptors were observed in rabbit, rat, and dog

hearts. In all three species studied, α_1 -receptor density

in the newborn was greater than that f α_1 -adrenoceptors were observed in rabbit, rat, and dog hearts. In all three species studied, α_1 -receptor density in the newborn was greater than that found in the adult. For example, in canine hearts, α_1 -adren Specifically, using $[125]$ IBE2254 as a ligand, del Balzo et hearts. In all three species studied, α_1 -receptor density
in the newborn was greater than that found in the adult.
For example, in canine hearts, α_1 -adrenoceptors are 10-
fold more abundant in the young than in th in the newborn was greater than that found in the adult.
For example, in canine hearts, α_1 -adrenoceptors are 10-
fold more abundant in the young than in the adult heart.
Specifically, using $[^{125}]$ IBE2254 as a ligand For example, in canine hearts, α_1 -adrenoceptors are 10-
fold more abundant in the young than in the adult heart.
Specifically, using $[^{125}]$ JBE2254 as a ligand, del Balzo et
al. (1990) found 220 fmol/mg α_1 -adreno fold more abundant in the young than in the adult heart.
Specifically, using $[^{125}]$ IBE2254 as a ligand, del Balzo et al. (1990) found 220 fmol/mg α_1 -adrenoceptors in 1-
month-old dogs versus 23 fmol/mg in the adult. Specifically, using $[1^{25}]$ IBE2254 as a ligand, del Balzo et al. (1990) found 220 fmol/mg α_1 -adrenoceptors in 1-month-old dogs versus 23 fmol/mg in the adult. Using the same ligand, Buchthal et al. (1987) reported t al. (1990) found 220 fmol/mg α_1 -adrenoceptors in 1-
month-old dogs versus 23 fmol/mg in the adult. Using
the same ligand, Buchthal et al. (1987) reported the
presence of high- and low-affinity sites. The density of
hi month-old dogs versus 23 fmol/mg in the adult. Using
the same ligand, Buchthal et al. (1987) reported the
presence of high- and low-affinity sites. The density of
high-affinity sites displays no change with age (B_{max} 23 the same ligand, Buchthal et al. (1987) reported the presence of high- and low-affinity sites. The density of high-affinity sites displays no change with age (B_{max} 25 \pm 6 fmol/mg in fetal, 14 \pm 10 fmol/mg in n presence of high- and low-affinity sites. The density of
high-affinity sites displays no change with age (B_{max} 23
 \pm 6 fmol/mg in fetal, 14 \pm 10 fmol/mg in neonatal, and
 25 ± 15 fmol/mg in adult), whereas the den \pm 6 fmol/mg in fetal, 14 \pm 10 fmol/mg in neonatal, and 25 \pm 15 fmol/mg in adult), whereas the density of low-
affinity sites decreases in the adult (B_{max} 1460 \pm 380
fmol/mg in fetal, 1710 \pm 440 fmol/mg in 25 \pm 15 fmol/mg in adult), whereas the density of low-
affinity sites decreases in the adult (B_{max} 1460 \pm 380
fmol/mg in fetal, 1710 \pm 440 fmol/mg in neonatal, and
510 \pm 155 fmol/mg in adult). No age-related fmol/mg in fetal, 1710 \pm 440 fmol/mg in neonatal, and 510 \pm 155 fmol/mg in adult). No age-related differences in the receptor affinity have been described (Buchthal et al., 1987; Nakanishi et al., 1989; Han et al., 510 \pm 155 fmol/mg in adult). No age-related differences
in the receptor affinity have been described (Buchthal et
al., 1987; Nakanishi et al., 1989; Han et al., 1989; del
Balzo et al., 1990). Beyond middle age, the num al., 1987; Nakanishi et al., 1989; Han et al., 1989; del
Balzo et al., 1990). Beyond middle age, the number of
 α_1 -adrenoceptors further declines (Kimball et al., 1991).
This decline may be due to diminished levels of Balzo et al., 1990). Beyond middle age, the number of α_1 -adrenoceptors further declines (Kimball et al., 1991). This decline may be due to diminished levels of α_1 -adrenoceptor gene transcripts in the aging myocard α_1 -adrenoceptors further declines (Kimball et al., 1991). represent
This declined
renocept
because lev
by Norther
al., 1991).
B. Cardiac adrenoceptor gene transcripts in the a_l
because levels of α₁-adrenoceptor mRN
by Northern blot analysis decrease witl
al., 1991).
B. Cardiac α₁-*Adrenoceptor Subtypes*
Evidence has been obtained from se

Evidence has been obtained from several tissues that α_1 -adrenoceptors can be further subdivided into at least two pharmacologically distinct subtypes that appear to at, 1991).

B. Cardiac α_1 -Adrenoceptor Subtypes

Evidence has been obtained from several tissues that
 α_1 -adrenoceptors can be further subdivided into at least

two pharmacologically distinct subtypes that appear B. Cardiac α_1 -Adrenoceptor Subtypes
Evidence has been obtained from several tissues that α_1 -adrenoceptors can be further subdivided into at least
two pharmacologically distinct subtypes that appear to
be linked to Evidence has been obtained from several tissues that α_1 -adrenoceptors can be further subdivided into at least two pharmacologically distinct subtypes that appear to be linked to different signal transduction pathways These subtypes can be further subdivided into at least
two pharmacologically distinct subtypes that appear to
be linked to different signal transduction pathways and
effector systems (Han et al., 1987; Minneman, 1988).
Th two pharmacologically distinct subtypes that appear
be linked to different signal transduction pathways a
effector systems (Han et al., 1987; Minneman, 198
These subtypes, named α_{1A} and α_{1B} , can be distinguish
o effector systems (Han et al., 1987; Minneman, 1988).
These subtypes, named α_{1A} and α_{1B} , can be distinguished
on the basis of their sensitivity toward selective antago-
nists. The α_{1A} -subtype has a higher af effector systems (Han et al., 1987; Minneman, 1988
These subtypes, named α_{1A} and α_{1B} , can be distinguish
on the basis of their sensitivity toward selective antag
nists. The α_{1A} -subtype has a higher affinity These subtypes, named α_{1A} and α_{1B} , can be distinguished
on the basis of their sensitivity toward selective antago-
nists. The α_{1A} -subtype has a higher affinity than the α_{1B} -
subtype for the antagonists migts. The α_{1A} -subtype has a higher affinity than the α_1
subtype for the antagonists 5-methyl-urapidil, Wl
4101,‡ and (+)-niguldipine or the novel prazosin deri
 \uparrow Abbreviations: WB-4101, 2-(2,6-dimethoxypheno

6,7-dimethoxy-2-quinazolinyl-4-(2-bicyclo[2,2,2]octa-2,5 dienylcarbon-4101, 4 and (+)-niguidipline or the novel prazosin deleterations: WB-4101, 2-(2,6-dimethoxyphenoxyethyl)-amethyl-1,4-benzodioxane; PI, phosphatidyl inositol; SZL-49, 4-am
6,7-dimethoxy-2-quinazolinyl-4-(2-bicyclo[2,2,2]oct [†] Abbreviations: WB-4101, 2-(2,6-dimethoxyphenoxyethyl)-amino-
methyl-1,4-benzodioxane; PI, phosphatidyl inositol; SZL-49, 4-amino-
6,7-dimethoxy-2-quinazolinyl-4-(2-bicyclo[2,2,2]octa-2,5 dienylcarbon-
yl-2-piperazine; methyl-1,4-benzodioxane; PI, phosphatidyl inositol; SZL-49, 4-amine
6,7-dimethoxy-2-quinazolinyl-4-(2-bicyclo[2,2,2]octa-2,5 dienylcarbor
yl-2-piperazine; CEC, chlorethylclonidine; AMP, adenosine monopho
phate; cAMP, cycli yl-2-piperazine; CEC, chlorethylclonidine; AMP, adenosine monophos-
phate; cAMP, cyclic AMP; GTP, guanosine triphosphate; IP_3 , inositol
trisphosphate; IP_2 , inositol hephosphate; IP_4 , inositol monophosphate;
 IP_4 , i nase C; I_{Ca} , inward Ca²⁺ current; I_{ω} , transient outward K⁺ current; I_{k} , pherazine, CEO, emorelly acomine, Avir, accrossine mortophos-
phate; cAMP, cyclic AMP; GTP, guanosine triphosphate; IP₃, inositol
trisphosphate; IP₂, inositol biphosphate; IP₁, inositol monophosphate;
IP₄, inositol phace, crivit, cyclic Attri, C11, gualitosine criphosphace, 11 3, mostol
trisphosphate; IP_2 , inositol biphosphate; IP_1 , inositol monophosphate;
 IP_4 , inositol tetraphosphate; IP_6 , inositol hexaphosphate; PIP_3 , pho IP₄, inositol tetraphosphate; IP₆, inositol hexaphosphate; PIP₃, phosphoinositide diphosphate; DAG, 1,2-diacylglycerol; PKC, protein kinase C; I_{C4}, inward Ca²⁺ current; I_{k₀}, transient outward K⁺ current; I phoinositide diphosphate; DAG, 1,2-dimase C; $L_{c,s}$, inward Ca^{2+} current; I_{ω} , tradelayed outward K^+ current; $I_{k \text{ Ach}}$ mupH_i, intracellular pH; ANP, atria $- \log [Ca^{2+}; MLC$, myosin light chain.

byCEC.

CARDIAC α_1 -ADRI

ive SZL-49. The α_{1B} -subtype is irreversibly alkylated

CEC.

Based on their respective sensitivity toward selective

A-antagonists, it was concluded that 20% of α_1 -adreative SZL-49. The α_{1B} -subtype is irreversibly alkyla
by CEC.
Based on their respective sensitivity toward select
 α_{1A} -antagonists, it was concluded that 20% of α_1 -ad
noceptors belong to the α_{1A} -subtype i ative SZL-49. The α_{1B} -subtype is irreversibly alkyla
by CEC.
Based on their respective sensitivity toward selector-
 α_{1A} -antagonists, it was concluded that 20% of α_1 -ac
noceptors belong to the α_{1A} -subtyp by CEC. however, the respective sensitivity toward selective reconducted that 20% of α_1 -adre-
 α_{1A} -antagonists, it was concluded that 20% of α_1 -adre-

noceptors belong to the α_{1A} -subtype in the rat myoca Based on their respective sensitivity toward selective α_{1A} -antagonists, it was concluded that 20% of α_1 -adre-noceptors belong to the α_{1A} -subtype in the rat myocardium, and the remaining 80% of the binding si α_{1A} -antagonists, it was concluded that 20% of α_1 -adre-
noceptors belong to the α_{1A} -subtype in the rat myocar-
dium, and the remaining 80% of the binding sites could ria
correspond to the α_{1B} -subtype (Gr noceptors belong to the α_{1A} -subtype in the rat myocar-
dium, and the remaining 80% of the binding sites could righ
correspond to the α_{1B} -subtype (Groß and Hanft, 1988; titio
Groß et al., 1988a). In the membrane dium, and the remaining 80% of the binding sites could rightcorrespond to the α_{1B} -subtype (Groß and Hanft, 1988; titic Groß et al., 1988a). In the membrane fraction derived not from rabbit ventricles, pretreatment wi correspond to the α_{1B} -subtype (Groß and Hanft, 1988; ti
Groß et al., 1988a). In the membrane fraction derived in
from rabbit ventricles, pretreatment with 10 μ M CEC si
decreased the B_{max} of α_1 -adrenoceptors, Gros et al., 1968a). In the membrane fraction derived
from rabbit ventricles, pretreatment with 10 μ M CEC
decreased the B_{max} of α_1 -adrenoceptors, assessed by [³H]
prazosin, to 37% of control, suggesting that 63 decreased the B_{max} of α_1 -adrenoceptors, assessed by [³H] binding affinity, this indicates that cardiac α_1 -adrenocep-
prazosin, to 37% of control, suggesting that 63% of α_1 - tors are coupled to a GTP-bindin prazosin, to 37% of control, suggesting that 63% of a
adrenoceptors in the rabbit ventricular myocardium b
long to the CEC-sensitive α_{1B} -subtype (Takanashi et a
1991). The canine myocardium also contains a subset
 α adrenoceptors in the rabort ventricular inyocardium be-
long to the CEC-sensitive α_{1B} -subtype (Takanashi et al., I-
1991). The canine myocardium also contains a subset of
 α_1 -adrenoceptors that are sensitive to CE 1990). mental change in the density of total α_1 -adrenoceptors
not associated with a change in the proportion of α_1 -
ceptors that are sensitive to CEC (del Balzo et al.,
90).
Molecular cloning confirmed the existence of a

is not associated with a change in the proportion of α_1 -
receptors that are sensitive to CEC (del Balzo et al., acti-
1990). Molecular cloning confirmed the existence of at least ino
two subtypes of cardiac α_1 -adr receptors that are sensitive to CEC (del Balzo et al., act 1990).

Molecular cloning confirmed the existence of at least inco

two subtypes of cardiac α_1 -adrenoceptors encoded by two

different genes (Lomasney et al., 1990). Molecular cloning confirmed the existence of at least
two subtypes of cardiac α_1 -adrenoceptors encoded by two
different genes (Lomasney et al., 1991b; for review, see
Lomasney et al., 1991a). The deduced amino Molecular cloning confirmed the existence of a
two subtypes of cardiac α_1 -adrenoceptors encoded
different genes (Lomasney et al., 1991b; for revid
Lomasney et al., 1991a). The deduced amino a
quence presumes a recepto two subtypes of cardiac α_1 -adrenoceptors encoded by two
different genes (Lomasney et al., 1991b; for review, see
Lomasney et al., 1991a). The deduced amino acid se-
quence presumes a receptor with a seven-membrane-
sp different genes (Lomasney et al., 1991b; for review, s
Lomasney et al., 1991a). The deduced amino acid s
quence presumes a receptor with a seven-membran
spanning domain topography. However, the comple
classification of $\$ spanning domain topography. However, the complete be
classification of α_1 -adrenoceptors is still not fully established. Indeed, in heart tissue, Han and Minneman
(1991) recently reported the persistence of low-affinit lished. Indeed, in heart tissue, Han and Minneman (1991) recently reported the persistence of low-affinity sites for niguldipine after CEC pretreatment. Thus, the existence of additional receptor subtypes in cardiac muscl (1991) recently reported the persistence of low-affinisites for niguldipine after CEC pretreatment. Thus, t existence of additional receptor subtypes in cardiac mucle is plausible. This receptor does not belong to the α sites for highlappine after CEC pretreatment. I hus, the
existence of additional receptor subtypes in cardiac mus-
cle is plausible. This receptor does not belong to the α_{1C} -
subtype that has a high affinity for $\alpha_{$ cle is plausible. This receptor does not belong to the α_{1C} situaty
subtype that has a high affinity for α_{1A} -selective antag-
onists but is partially inhibited by CEC (Cotecchia et al.,
1988; Schwinn et al., 1990 subtype that has a high affinity for α_{1A} -selective antag-
onists but is partially inhibited by CEC (Cotecchia et al.,
1988; Schwinn et al., 1990, 1991). A new subtype, named
 α_{1D} , was recently cloned using soluti onists but is partially inhibited by CEC (Cotecchia et al. 1988; Schwinn et al., 1990, 1991). A new subtype, named α_{1D} , was recently cloned using solution phase library screening (Perez et al., 1991). It should be po 1988; Schwinn et al., 1990, 1991). A new subtype, name α_{1D} , was recently cloned using solution phase librar screening (Perez et al., 1991). It should be pointed ou that the relationship between cloned α_1 -adren α_{1D} , was recently
screening (Perez
that the relation
and pharmacolog
pletely understoo **III. Cardiac and Signally distinct subtypes is not yermacologically distinct subtypes is not yermacologically distinct subtypes is not yermated in Transduction Pathways**

logically distinct subtypes is

cood.
 Transduction Pathways
 Cardiac α₁-Adrenoceptors to
 Cardiac α₁-Adrenoceptors to

A. Cardiac α₁-Adrenoceptor Signal Transduction Pathways
A. Coupling of Cardiac α₁-Adrenoceptors to G-Regulatory Proteins Proteins

Transduction Pathways

Coupling of Cardiac α_1 -Adrenoceptors to G-Regulatory

oteins

Guanine nucleotide regulatory proteins, G-proteins

ansmit the signal from seven transmembrane domain A. Coupling of Cardiac α_1 -Adrenoceptors to G-Regulatory

Proteins m

Guanine nucleotide regulatory proteins, G-proteins, Ir

transmit the signal from seven transmembrane domain

receptors to intracellular effectors (f A. Couping of Caralac α_1 -Aarenoceptors to G-Regulatory
Proteins
Guanine nucleotide regulatory proteins, G-proteins,
transmit the signal from seven transmembrane domain
receptors to intracellular effectors (for review, Proteins

Guanine nucleotide regulatory proteins, G-proteins,

transmit the signal from seven transmembrane domain

receptors to intracellular effectors (for review, see Stryer

and Bourne, 1986; Gilman, 1987; Birnbaumer e Guanine nucleotide regulatory proteins, G-proteins, I
transmit the signal from seven transmembrane domain
receptors to intracellular effectors (for review, see Stryer I
and Bourne, 1986; Gilman, 1987; Birnbaumer et al., 1 transmit the signal from seven transmembrane domain
receptors to intracellular effectors (for review, see Stryer
and Bourne, 1986; Gilman, 1987; Birnbaumer et al., 1990;
Taylor, 1990). G-proteins cycle between an inactive
 receptors to intracellular effectors (for review, see Stryer I
and Bourne, 1986; Gilman, 1987; Birnbaumer et al., 1990;
Taylor, 1990). G-proteins cycle between an inactive
guanosine diphosphate state and an active GTP stat and Bourne, 1986; Gilman, 1987; Birnbaumer et al., 1990;
Taylor, 1990). G-proteins cycle between an inactive
guanosine diphosphate state and an active GTP state.
The hormone-receptor complex catalyzes the activation
of a G Taylor, 1990). G-proteins cycle between an inactive et guanosine diphosphate state and an active GTP state. 197
The hormone-receptor complex catalyzes the activation cA.
of a G-protein by accelerating the release of guanos guanosine diphosphate state and an active GTP state. 19
The hormone-receptor complex catalyzes the activation cof a G-protein by accelerating the release of guanosine we diphosphate and the subsequent entry of GTP. A high The hormone-receptor complex catalyzes the activation of a G-protein by accelerating the release of guanosine well diphosphate and the subsequent entry of GTP. A high and degree of amplification can be achieved because a s of a G-protein b
diphosphate and
degree of amplifi
hormone-recepto
many G-proteins

CARDIAC α_1 -ADRENOCEPTORS ative SZL-49. The α_{1B} -subtype is irreversibly alkylated The property, that GTP diminishes the binding of a
by CEC. hormone to its receptor if a G-protein is coupled to the
Based on their 149
The property, that GTP diminishes the binding of a hormone to its receptor if a G-protein is coupled to the ENOCEPTORS 149
The property, that GTP diminishes the binding of a
hormone to its receptor if a G-protein is coupled to the
receptor, was exploited as a strategy to define whether a
G-protein is linked to the cardiac α_1 The property, that GTP diminishes the binding of a
hormone to its receptor if a G-protein is coupled to the
receptor, was exploited as a strategy to define whether a
G-protein is linked to the cardiac α_1 -adrenoceptor. The property, that GTP diminishes the binding of a
hormone to its receptor if a G-protein is coupled to the
receptor, was exploited as a strategy to define whether a
G-protein is linked to the cardiac α_1 -adrenoceptor. hormone to its receptor if a G-protein is coupled to t
receptor, was exploited as a strategy to define whethe
G-protein is linked to the cardiac α_1 -adrenoceptor. T
addition of GTP, or its analogue Gpp(NH)p, causes
rig receptor, was exploited as a strategy to define whethe G-protein is linked to the cardiac α_1 -adrenoceptor. T
addition of GTP, or its analogue Gpp(NH)p, cause
rightward shift and a steepening of the agonist com
tition G-protein is linked to the cardiac α_1 -adrenoceptor. The addition of GTP, or its analogue Gpp(NH)p, causes rightward shift and a steepening of the agonist comptition curve, which reflects the competition of α_1 -adre addition of GTP, or its analogue Gpp(NH)p, cause
rightward shift and a steepening of the agonist com
tition curve, which reflects the competition of α_1 -ad
noceptor agonists for labeled α_1 -adrenoceptor-bind
sites. rightward shift and a steepening of the agonist co
tition curve, which reflects the competition of α_1 -
noceptor agonists for labeled α_1 -adrenoceptor-bin
sites. Because the addition of GTP reduces the ago
binding a tition curve, which reflects the competition of α_1 -adre-
noceptor agonists for labeled α_1 -adrenoceptor-binding
sites. Because the addition of GTP reduces the agonist-
binding affinity, this indicates that cardiac noceptor agonists for labeled α_1 -adrenoceptor-binding
sites. Because the addition of GTP reduces the agonist-
binding affinity, this indicates that cardiac α_1 -adrenocep-
tors are coupled to a GTP-binding protein (sites. Because the addition of GTP redu
binding affinity, this indicates that cardia
tors are coupled to a GTP-binding pro
al., 1984; Buxton and Brunton, 1986; Gr
Han et al., 1989; cf. Stiles et al., 1983).
Pertussis toxin Frame and the GTP-binding protein (Colucci

rs are coupled to a GTP-binding protein (Colucci

1984; Buxton and Brunton, 1986; Groß et al., 1988

an et al., 1989; cf. Stiles et al., 1983).

Pertussis toxin interrupts hormo

 α_1 -adrenoceptors that are sensitive to CEC. The devel-
opmental change in the density of total α_1 -adrenoceptors
is toxin treatment has been reported to prevent
is not associated with a change in the proportion of quence presumes a receptor with a seven-membrane-
spanning domain topography. However, the complete
classification of α_1 -adrenoceptors is still not fully estab-
lished. Indeed, in heart tissue, Han and Minneman
(1991) spanning domain topography. However, the complete
classification of α_1 -adrenoceptors is still not fully estab-
lished. Indeed, in heart tissue, Han and Minneman
(1991) recently reported the persistence of low-affinity tors are coupled to a GTP-binding protein (Colucci et al., 1984; Buxton and Brunton, 1986; Groß et al., 1988b; Han et al., 1989; cf. Stiles et al., 1983). Pertussis toxin interrupts hormonal signaling by ADP-ribosylating al., 1984; Buxton and Brunton, 1986; Groß et al., 1988b;
Han et al., 1989; cf. Stiles et al., 1983).
Pertussis toxin interrupts hormonal signaling by ADP-
ribosylating some G-proteins (e.g., G_i and G_o classes).
Pertus Han et al., 1989; cf. Stiles et al., 1983).

Pertussis toxin interrupts hormonal signaling by ADP-

ribosylating some G-proteins (e.g., G_i and G_o classes).

Pertussis toxin treatment has been reported to prevent

seve Pertussis toxin interrupts hormonal signaling by ADP-
ribosylating some G-proteins (e.g., G_i and G_o classes).
Pertussis toxin treatment has been reported to prevent
several α_1 -adrenoceptor-mediated effects includi ribosylating some G-proteins (e.g., G_i and G_o classes).
Pertussis toxin treatment has been reported to prevent
several α_1 -adrenoceptor-mediated effects including the
activation of the Na⁺/K⁺ pump (Steinberg et Pertussis toxin treatment has been reported to prevent
several α_1 -adrenoceptor-mediated effects including the
activation of the Na⁺/K⁺ pump (Steinberg et al., 1985;
Shah et al., 1988; Rosen et al., 1989) or the po several α_1 -adrenoceptor-mediated effects including th
activation of the Na⁺/K⁺ pump (Steinberg et al., 1985
Shah et al., 1988; Rosen et al., 1989) or the positiv
inotropic effect (Böhm et al., 1987). However, pert activation of the Na⁺/K⁺ pump (Steinberg et al., 1985;
Shah et al., 1988; Rosen et al., 1989) or the positive
inotropic effect (Böhm et al., 1987). However, pertussis
toxin does not prevent all α_1 -adrenoceptor-med Shah et al., 1988; Rosen et al., 1989) or the positive inotropic effect (Böhm et al., 1987). However, pertussitival to the 74-adrenoceptor-mediated effects. Indeed, a pertussis toxin-insensitive G-protein which could hypo frotiophe effect (Bohin et al., 1991). However, pertussis
toxin does not prevent all α_1 -adrenoceptor-mediated ef-
fects. Indeed, a pertussis toxin-insensitive G-protein
which could hypothetically be the 74-kDa protein which could hypothetically be the 74-kDa protein idenwhich could hypothetically be the 74-kDa protein identified as G_h (Im and Graham, 1990; Im et al., 1990) has been implicated in linking the cardiac α_1 -adrenoceptor to phospholipase C and to the stimulation of phosph tified as G_h (Im and Graham, 1990; Im et al., 1990) has
been implicated in linking the cardiac α_1 -adrenoceptor
to phospholipase C and to the stimulation of phosphati-
dyl inositol turnover, at least in rat cardiac t been implicated in linking the cardiac α_1 -adrenoce to phospholipase C and to the stimulation of phosph dyl inositol turnover, at least in rat cardiac times (Schmitz et al., 1987c; Steinberg et al., 1989). G_h app to to phospholipase C and to the stimulation of phospholipase C and to the stimulation of phospholip discreption (Schmitz et al., 1987c; Steinberg et al., 1989). G_h appto be different, by its molecular mass and chron graph dyl inositol turnover, at least in rat cardiac tissue (Schmitz et al., 1987c; Steinberg et al., 1989). G_h appears to be different, by its molecular mass and chromatographic behavior, from the other pertussis toxin-insen (Schmitz et al., 1987c; Steinberg et al., 1989). G_h appears
to be different, by its molecular mass and chromato-
graphic behavior, from the other pertussis toxin-insen-
sitive G-proteins, including the G_q family, usua to be different, by its molecular mass and chromato-
graphic behavior, from the other pertussis toxin-insensitive G-proteins, including the G_q family, usually de-
scribed as regulating the isozyme β_1 of phospholipas sitive G-proteins, including the G_q family, usually described as regulating the isozyme β_1 of phospholipase C (Berstein et al., 1992; Blank et al., 1991; Martin et al., 1991; Im and Graham, 1990; Im et al., 1990). T sitive G-proteins, including the G_q family, usually described as regulating the isozyme β_1 of phospholipase C (Berstein et al., 1992; Blank et al., 1991; Martin et al., 1991; Im and Graham, 1990; Im et al., 1990). T Scribed as regularing the isozyme p_1 or phosphonpase C
(Berstein et al., 1992; Blank et al., 1991; Martin et al., 1991; Im and Graham, 1990; Im et al., 1990). Thus,
several G-proteins, both pertussis toxin sensitive an *B. Second G-proteins, bother*
B. Second Messengers
B. Second Messengers
It is now well establis

Second Messengers

It is now well established that various molecules could

The is now well established that various molecules could

The assecond messengers to convey the signal from the

The second messengers to convey intracellular effectors (table 1).
B. Second Messengers
It is now well established that various molecules could
serve as second messengers to convey the signal from the
activated receptor-G-protein complex to different int B. Second Messengers
It is now well established that various molecules could
serve as second messengers to convey the signal from the
activated receptor-G-protein complex to different intra-
cellular targets. These include It is now well established that various molecules could
serve as second messengers to convey the signal from the
activated receptor-G-protein complex to different intra-
cellular targets. These include cAMP, cylic guanosin activated receptor-G-protein complex to different intracellular targets. These include cAMP, cylic guanosine monophosphate, and IP₃ (Sutherland, 1972; Berridge and Irvine, 1989). tivated receptor-G-protein complex to different intra-
Ilular targets. These include cAMP, cylic guanosine
onophosphate, and IP₃ (Sutherland, 1972; Berridge and
vine, 1989).
In heart muscle, α_1 -adrenoceptor agonists

cellular targets. These include cAMP, cylic guanosi
monophosphate, and IP₃ (Sutherland, 1972; Berridge a
Irvine, 1989).
In heart muscle, α_1 -adrenoceptor agonists were ported not to affect either basal cAMP or cyclic monophosphate, and IP₃ (Sutherland, 1972; Berridge and Irvine, 1989).
In heart muscle, α_1 -adrenoceptor agonists were reported not to affect either basal cAMP or cyclic guanosine monophosphate levels (Osnes and Øye, Irvine, 1989).

In heart muscle, α_1 -adrenoceptor agonists were re-

ported not to affect either basal cAMP or cyclic guano-

sine monophosphate levels (Osnes and Øye, 1975; Brodde

et al., 1978; review: Osnes et al., In heart muscle, α_1 -adrenoceptor agonists were re-
ported not to affect either basal cAMP or cyclic guano-
sine monophosphate levels (Osnes and Øye, 1975; Brodde
et al., 1978; review: Osnes et al., 1985; cf. Keely et ported not to affect either basal cAMP or cyclic guano-
sine monophosphate levels (Osnes and Øye, 1975; Brodde
et al., 1978; review: Osnes et al., 1985; cf. Keely et al.,
1977). α_1 -Adrenoceptor agonists caused a decre sine monophosphate levels (Osnes and Øye, 1975; Brodder al., 1978; review: Osnes et al., 1985; cf. Keely et al. 1977). α_1 -Adrenoceptor agonists caused a decrease in cAMP levels but only under conditions in which cAME et al., 1978; review: Osnes et al., 1985; cf. Keely et al., 1977). α_1 -Adrenoceptor agonists caused a decrease in cAMP levels but only under conditions in which cAMP was elevated by the prior application of a β -adre 1977). α_1 -Adrenoceptor agonists caused a decrease in cAMP levels but only under conditions in which cAMP was elevated by the prior application of a β -adrenoceptor agonist (Watanabe et al., 1977; Buxton and Brunton, cAMP levels but only under conditions in which cAMP
was elevated by the prior application of a β -adrenoceptor
agonist (Watanabe et al., 1977; Buxton and Brunton,
1985a). This effect was attributed to α_1 -adrenergic was elevated by the prior application of a β -adrenocepto:
agonist (Watanabe et al., 1977; Buxton and Brunton
1985a). This effect was attributed to α_1 -adrenergic stim
ulation of the cAMP-phosphodiesterase activity,

TABLE 1 **PERZIC ET AL.**
 Pertussis toxin-sensitive and -insensitive α_1 **-adrenergic effects reported in cardiac tissue**
 Pertussis toxin insensitive
 Pertussis toxin insensitive

Pertussis toxin sensitive	Pertussis toxin insensitive	References
Negative chronotropy		Steinberg et al. (1985)
Na/K pump activation		Shah et al. (1988)
	Positive chronotopy	Han et al. (1989)
Modulation of intracellular Ca and cell shortening		Sen et al. (1990)
	PLC	Steinberg et al. (1989)
	PI turnover	Schmitz et al. (1987c)
	I_{to} , I_{k1} , I_{kACH}	Braun et al. (1990, 1992)
		Fedida et al. (1991)
		Lee et al. (1991)
	Positive inotropic effect	Böhm et al. (1987)
Positive inotropic effect		Kim et al. (1987)
	Induction of the Egr1 gene	Iwaki et al. (1990)

Positive inotropic effect

inhibitors. In rat ventricular cardiac myocytes, it was epiceently demonstrated that CEC completely inhibits the 2,5
 α_1 -adrenergic effect on cAMP, suggesting that the occu-Induction

inhibitors. In rat ventricular cardiac myocytes, it we

recently demonstrated that CEC completely inhibits the
 α_1 -adrenergic effect on cAMP, suggesting that the occu-

pation of α_{1B} -receptors leads to inhibitors. In rat ventricular cardiac myocytes, it was eph
recently demonstrated that CEC completely inhibits the 2,3
 α_1 -adrenergic effect on cAMP, suggesting that the occu-
pation of α_{1B} -receptors leads to the inhibitors. In rat ventricular cardiac m
recently demonstrated that CEC complet
 α_1 -adrenergic effect on cAMP, suggesting
pation of α_{1B} -receptors leads to the activ
breakdown (Hilal-Dandan et al., 1991).
The first α_1 -adrenergic effect on cAMP, suggesting that the occupation of α_{1B} -receptors leads to the activation of cAMP breakdown (Hilal-Dandan et al., 1991).
The first evidence that the adrenergic system regulates phospho α_1 -adrenergic effect on cAMP, suggesting that the occu-
pation of α_{1B} -receptors leads to the activation of cAMP IP₂). T
breakdown (Hilal-Dandan et al., 1991). acid wi
The first evidence that the adrenergic syst

pation of α_{1B} -receptors leads to the activation of cAMP
breakdown (Hilal-Dandan et al., 1991).
The first evidence that the adrenergic system regulates
phosphoinositide metabolism (PI) in the heart came from
the work The first evidence that the adrenergic system regular
phosphoinositide metabolism (PI) in the heart came fithe work of Gaut and Huggins (1966). After radiolabe
Na⁺ orthophosphate was administered in vivo, epine
rine incr The first evidence that the adrenergic system regulates the phosphoinositide metabolism (PI) in the heart came from fit the work of Gaut and Huggins (1966). After radiolabeled Na⁺ orthophosphate was administered in vivo, phosphoinositide metabolism (PI) in the heart came from
the work of Gaut and Huggins (1966). After radiolabeled
Na⁺ orthophosphate was administered in vivo, epineph-
rine increased the radioactivity of the PI fraction of the work of Gaut and Huggins (1900). First radiofabele Na⁺ orthophosphate was administered in vivo, epinephrine increased the radioactivity of the PI fraction of cardiac phospholipids. In 1985, Brown et al. showed that t rine increased the radioactivity of the PI fraction of cardiac phospholipids. In 1985, Brown et al. showed that the addition of norepinephrine to $[^3H]$ inositol-labeled trat ventricular cardiomyocytes caused a rapid (sign cardiac phospholipids. In 1985, Brown et al. showed that tography and demonstrated that norepinephrine, in cul-
the addition of norepinephrine to [³H]inositol-labeled tured rat ventricular myocytes, produced a rapid, tr the addition of norepinephrine to [³H]inositol-labeled
rat ventricular cardiomyocytes caused a rapid (signifi-
cant at 5 min) and prolonged (at least 40 min) increase
in [³H]inositol phosphate formation. The stimulato rat ventricular cardiomyocytes caused a rapid (significant at 5 min) and prolonged (at least 40 min) increase sust
in [³H]inositol phosphate formation. The stimulatory the
effect of norepinephrine was maximal (5-fold th cant at 5 min) and prolonged (at least 40 min) increase
in [³H]inositol phosphate formation. The stimulatory
effect of norepinephrine was maximal (5-fold the control
level of [³H]inositol phosphate) at 30 μ M, with effect of norepinephrine was maximal (5-fold the control
level of [³H]inositol phosphate) at 30 μ M, with an EC₅₀
of 1 μ M. The α_1 -adrenoceptor antagonist, prazosin, an-
tagonized this effect.
Subsequently, it

Subsequently, it was confirmed that α_1 -adrenergic agmever of \lfloor H jinositor phosphate) at 30 μ m, with an EC₅₀ good \lfloor μ m. The α_1 -adrenceptor antagonist, prazosin, antagonized this effect.

Subsequently, it was confirmed that α_1 -adrenergic ag-

onists tagonized this effect.

Subsequently, it was confirmed that α_1 -adrenergic ag-

onists stimulate PI breakdown in different cardiac prep-

arations. These include embryonic chick heart cells

i (Brown and Jones, 1986), Subsequently, it was confirmed that α_1 -adrenergic ag-
onists stimulate PI breakdown in different cardiac prep-
arations. These include embryonic chick heart cells is
(Brown and Jones, 1986), rat perfused heart (Woodco onists stimulate PI breakdown in different cardiac preparations. These include embryonic chick heart cells is
(Brown and Jones, 1986), rat perfused heart (Woodcock Het al., 1987), rat ventricles (Poggioli et al., 1986), cu arations. These include embryonic chick heart cells
(Brown and Jones, 1986), rat perfused heart (Woodcock
et al., 1987), rat ventricles (Poggioli et al., 1986), cultured
rat myocardial cells (Steinberg et al., 1987), rat p (Brown and Jones, 1986), rat perfused heart (Woodcock et al., 1987), rat ventricles (Poggioli et al., 1986), cultured rat myocardial cells (Steinberg et al., 1987), rat papillary muscles (Otani et al., 1988), rat atria (S et al., 1987), rat ventricles (Poggioli et al., 1986), cultured
rat myocardial cells (Steinberg et al., 1987), rat papillary
muscles (Otani et al., 1988), rat atria (Scholz et al., 1988;
Kohl et al., 1990), and canine car rat myocardial cells (Steinberg et al., 1987), rat papillary
muscles (Otani et al., 1988), rat atria (Scholz et al., 1988;
Kohl et al., 1990), and canine cardiomyocytes (Heathers
et al., 1989). The α_1 -adrenoceptor-med muscles (Otani et al., 1988), rat atria (Scholz et al., 1988;
Kohl et al., 1990), and canine cardiomyocytes (Heathers
et al., 1989). The α_1 -adrenoceptor-mediated PI turnover
is not affected by the composition of the m Kohl et al., 1990), and canine cardiomyocytes (Heathers put al., 1989). The α_1 -adrenoceptor-mediated PI turnover M
is not affected by the composition of the membrane's (1
phospholipids in polyunsaturated fatty acids (et al., 1989). The α_1 -adrenoceptor-mediated P1 turnover
is not affected by the composition of the membrane's
phospholipids in polyunsaturated fatty acids (Meij et al.,
1990). Endoh et al. (1991) reported a correlation is not affected by the composition of the membrane's
phospholipids in polyunsaturated fatty acids (Meij et al.,
1990). Endoh et al. (1991) reported a correlation between
the acceleration of PI turnover and the density of phospholipids in polyunsaturated fatty acids (Meij et al., perf
1990). Endoh et al. (1991) reported a correlation between 674
the acceleration of PI turnover and the density of sar-30 s
colemmal α_1 -adreneceptors. This 1990). Endoh et al. (1991) report
the acceleration of PI turnover
colemmal α_1 -adrenoceptors. Thi
iations in the magnitude of the
PI breakdown between species.
Poggioli et al. (1986) showe colemmal α_1 -adrenoceptors. This could explain the value of the α_1 -adrenergic effect (PI breakdown between species.
Poggioli et al. (1986) showed that α_1 -adrenocept stimulation of rat muscles resulted in a sign

iations in the magnitude of the α_1 -adrenergic effect on atria

PI breakdown between species. time

Poggioli et al. (1986) showed that α_1 -adrenoceptor inosi

stimulation of rat muscles resulted in a significant bre PI breakdown between species.

Poggioli et al. (1986) showed that α_1 -adrenoceptor

stimulation of rat muscles resulted in a significant break-

down of PIP₂ that was concomitant with a maximum

increase in IP₃ for Poggioli et al. (1986) showed that α_1 -adrenoceptor
stimulation of rat muscles resulted in a significant break-
down of PIP₂ that was concomitant with a maximum
increase in IP₃ formation within 30 s. Otani et al. (stimulation of rat muscles resulted in a significant breadown of PIP_2 that was concomitant with a maximulation increase in IP_3 formation within 30 s. Otani et al. (19) further extended these results. The additio

 $\frac{2}{3}$ Egr1 gene livaki et al. (1987)

2,3-Diphosphoglyceric acid is a competitive inhibitor of

2,3-Diphosphoglyceric acid is a competitive inhibitor of

2,3-Diphosphatase (the enzyme that hydrolyzes IP₃ into the Egrl gene

1930)

1930 phosphates.

1930 phosphoglyceric acid is a competitive inhibitor of

1933 phosphatase (the enzyme that hydrolyzes IP_3 into

1933. The combined addition of 2,3-diphosphoglyceric

1939. ephrine-induced formation of $[^{3}H]$ inositol phosphate
2,3-Diphosphoglyceric acid is a competitive inhibitor of
IP₃ phosphatase (the enzyme that hydrolyzes IP₃ int
IP₂). The combined addition of 2,3-diphosphoglycer ephrine-induced formation of [³H]inositol phosphates.

2,3-Diphosphoglyceric acid is a competitive inhibitor of

IP₃ phosphatase (the enzyme that hydrolyzes IP₃ into

IP₂). The combined addition of 2,3-diphosphogl IP₃ phosphatase (the enzyme that hydrolyzes IP₃ into IP₂). The combined addition of 2,3-diphosphoglyceric further. acid with phenylephrine doubled the IP₃ formation. In these experiments, the IP₃ fraction was not separated further.
To resolve what individual inositol phosphate isomers are formed following α_1 -adrenoceptor occup these experiments, the IP_3 fraction was not separated

these experiments, the IP₃ fraction was not separa
further.
To resolve what individual inositol phosphate isom
are formed following α_1 -adrenoceptor occupation, Ste
berg et al. (1989) used high-performance liquid chr further.
To resolve what individual inositol phosphate isomers
are formed following α_1 -adrenoceptor occupation, Stein-
berg et al. (1989) used high-performance liquid chroma-
tography and demonstrated that norepinephr To resolve what individual inositol phosphate isomer
are formed following α_1 -adrenoceptor occupation, Stein
berg et al. (1989) used high-performance liquid chroma
tography and demonstrated that norepinephrine, in cul
 sustained increase in 1,3,4-IP₃, IP₂, and IP₁. 4-IP₁ was the predominant IP_1 isomer formed during stimulation tured rat ventricular myocytes, produced a rapid, transient increase in $1,4,5$ -IP₃ which was followed by a slower, sustained increase in $1,3,4$ -IP₃, IP₂, and IP₁. 4-IP₁ was the predominant IP₁ isomer formed sient increase in 1,4,5-IP₃ which was followed by a slow
sustained increase in 1,3,4-IP₃, IP₂, and IP₁. 4-IP₁ v
the predominant IP₁ isomer formed during stimulati
with norepinephrine. IP₂ and IP₃ accumulat sustained increase in 1,3,4-IP₃, IP₂, and IP₁. 4-IP
the predominant IP₁ isomer formed during stimul
with norepinephrine. IP₂ and IP₃ accumulation
greater than IP₁ accumulation in response to α_1 -
noceptor with norepinephrine. IP₂ and IP₃ accumulation v
greater than IP₁ accumulation in response to α_1 -ad
noceptor stimulation. This suggests that phosphoine
tides, rather than PI, are the prime targets of nore
nephrin with norepinephrine. IP₂ and IP₃ accumulation was
greater than IP₁ accumulation in response to α_1 -adre-
noceptor stimulation. This suggests that phosphoinosi-
tides, rather than PI, are the prime targets of nore eater than IP₁ accumulation in response to α_1 -adre-
ceptor stimulation. This suggests that phosphoinosi-
les, rather than PI, are the prime targets of norepi-
phrine-stimulated phospholipase activity in the heart.
T

noceptor stimulation. This suggests that phosphoino
tides, rather than PI, are the prime targets of nore
nephrine-stimulated phospholipase activity in the hea
To quantify inositol phosphate fractions in cani
isolated cardi tides, rather than PI, are the prime targets of norepi-
nephrine-stimulated phospholipase activity in the heart.
To quantify inositol phosphate fractions in canine
isolated cardiomyocytes stimulated with norepinephrine,
He mephrine-stimulated phospholipase activity in the heart.
To quantify inositol phosphate fractions in canine
isolated cardiomyocytes stimulated with norepinephrine,
Heathers et al. (1988) used gas chromatography coupled
wi isolated cardiomyocytes stimulated with norepinephrine,
Heathers et al. (1988) used gas chromatography coupled
with high-performance liquid chromatography and
showed that α_1 -adrenoceptor agonists increase, within
30 s Solated cardiomyocytes stimulated with horepinephrine,
Heathers et al. (1988) used gas chromatography coupled
with high-performance liquid chromatography and
showed that α_1 -adrenoceptor agonists increase, within
30 s, with high-performance liquid chromatography and
showed that α_1 -adrenoceptor agonists increase, within
30 s, 1,4,5-IP₃ from a baseline level of 10 to up to 40
pmol/mg protein and IP₄ from 3 to 15 pmol/mg protein.
M showed that α_1 -adrenoceptor agonists increase, within 30 s, 1,4,5-IP₃ from a baseline level of 10 to up to 40 pmol/mg protein and IP₄ from 3 to 15 pmol/mg protein.
More recently, using a radioimmunoassay, Mouton e 30 s, 1,4,5-IP₃ from a baseline level of 10 to up to 40 pmol/mg protein and IP₄ from 3 to 15 pmol/mg protein.
More recently, using a radioimmunoassay, Mouton et al. (1991) reported that α_1 -adrenergic stimulation o binot) ing protein and 114 from 5 to 15 pmol/ing protein.
More recently, using a radioimmunoassay, Mouton et al.
(1991) reported that α_1 -adrenergic stimulation of isolated
perfused heart increases 1,4,5-IP₃ from a b (1991) reported that α_1 -adrenergic stimulation of isolated
perfused heart increases 1,4,5-IP₃ from a basal value of
674 \pm 75 to 2387 \pm 385 pmol/g dry heart weight within
30 s.
Kohl et al. (1990), using electri

perfused heart increases $1,4,5$ -IP₃ from a basal value of 674 ± 75 to 2387 ± 385 pmol/g dry heart weight within 30 s.
Kohl et al. (1990), using electrically driven rat left atria labeled with [³H]inositol, studie 30 s.
 $10^{14} \pm 10^{16}$ to 2507 \pm 500 phot/g ary neart weight with 130 s.
 130 s.

Kohl et al. (1990), using electrically driven rat left

atria labeled with $[{}^{3}H]$ inositol, studied in more detail the

time co Kohl et al. (1990), using electrically driven rat left
atria labeled with [³H]inositol, studied in more detail the
time course of the effects of phenylephrine on individual
inositol phosphate isomers. $1,4,5$ -IP₃ was atria labeled with [³H]inositol, studied in more detail the
time course of the effects of phenylephrine on individual
inositol phosphate isomers. $1,4,5$ -IP₃ was the first com-
pound to increase maximally within 30 s time course of the effects of phenylephrine on individual
inositol phosphate isomers. $1,4,5$ -IP₃ was the first com-
pound to increase maximally within 30 s and to remain
elevated for at least 5 min; this increase was f inositol phosphate isomers. 1,4,5-IP₃ was the first com-
pound to increase maximally within 30 s and to remain
elevated for at least 5 min; this increase was followed by
an increase in inositol tetrakisphosphate, 1,3,4, pound to increase maximally within 30 s and to remain
elevated for at least 5 min; this increase was followed by
an increase in inositol tetrakisphosphate, $1,3,4,5$ -IP₄, and
 $1,4$ -IP₂ beginning within 2 min. The incr

CARDIAC α_1 -ADRENOCEPTORS 151

within 15 mm. Thus, in addition to 1,4,5-1P3, a1-adre-CARDIAC α_1 -AD
within 15 min. Thus, in addition to 1,4,5-IP₃, α_1 -adre-
noceptor stimulation elevates 1,3,4,5-IP₄ in rat atria.
Guse et al. (1989) also showed that 1,4,5-IP₃ reached a CARDIAC α_1 -ADREN
within 15 min. Thus, in addition to 1,4,5-IP₃, α_1 -adre-
noceptor stimulation elevates 1,3,4,5-IP₄ in rat atria. cel
Guse et al. (1989) also showed that 1,4,5-IP₃ reached a per
peak within 30 minutes, and 1,3,4-IP₃ and 1,3,4,5-IP₄ in rat atria.

Guse et al. (1989) also showed that $1,4,5$ -IP₃ reached a p

peak within 30 s; this isomer remained high for several c

minutes, and $1,3,4$ -IP₃ and $1,3,4,5$ slowed then rapidly decreased toward their basal peak within 30 s; this isomer remained high for several minutes, and 1,3,4-IP₃ and 1,3,4,5-IP₄ increased more slowly and then rapidly decreased toward their basal level peak within 30 s; this isomer remained high for several minutes, and 1,3,4-IP₃ and 1,3,4,5-IP₄ increased more slowly and then rapidly decreased toward their basal level within 5 min. Recently, Woodcock et al. (1992) r minutes, and 1,3,4-IP₃ and 1,3,4,5-IP₄ increased more slowly and then rapidly decreased toward their basal
level within 5 min. Recently, Woodcock et al. (1992)
reported that α_1 -adrenergic stimulation induces an in slowly and then raphuy decreased toward then be
level within 5 min. Recently, Woodcock et al. (19
reported that α_1 -adrenergic stimulation induces an
crease in IP₄ in cultured neonatal cells but not in int
neonatal h rever whilm 5 mm. Recently, Woodcock et al. (1552)
reported that α_1 -adrenergic stimulation induces an in-
crease in IP₄ in cultured neonatal cells but not in intact
respective in the intact heart despite the presenc crease in H_4 in cultured neonatal cens out not in intact
neonatal hearts. The authors concluded that the metab-
olism of IP_3 occurred mainly by dephosphorylation in
the intact heart despite the presence of an IP_3 k neonatal hearts. The authors concluded that the met
olism of IP₃ occurred mainly by dephosphorylation
the intact heart despite the presence of an IP₃ kin
activity in this cardiac preparation (Renard and Poggi
1987); in onsin of I₃ occurred mainly by dephosphorylation in
the intact heart despite the presence of an IP₃ kinase
activity in this cardiac preparation (Renard and Poggioli,
1987); in isolated cultured neonatal cells, both dep activity in this cardiac preparation (Renard and Poggioli, particle 1987); in isolated cultured neonatal cells, both dephos-
phorylation and phosphorylation pathways operate. It These authors advise caution in interpreting 1987); in isolated cultured neonatal cells, both dephos-
phorylation and phosphorylation pathways operate.
These authors advise caution in interpreting data con-
cerning the phosphoinositide turnover obtained in cul-
tured phorylation and phosphorylation pathways operate
These authors advise caution in interpreting data concerning the phosphoinositide turnover obtained in cultured neonatal cells, because these cells could have lost
in part, riese authors advise caution in interpreting data concerning the phosphoinositide turnover obtained in cutured neonatal cells, because these cells could have los in part, their cellular differentiation. The physiologic rol terming the phosphomositic turnover obtained in cur-
tured neonatal cells, because these cells could have lost,
in part, their cellular differentiation. The physiological
role of 1,3,4,5-IP₄ in the heart remains to be d

in part, their central differentiation. The physiological
role of 1,3,4,5-IP₄ in the heart remains to be determined.
Using the high-performance liquid chromatography
metal dye detection technique, Scholz et al. (1992b)
 The only 1,3,4,5-1P₄ in the neart remains to be determined. Using the high-performance liquid chromatography Takenetal dye detection technique, Scholz et al. (1992b) al. (recently showed that α_1 -adrenergic stimulati metal dye detection technique, Scholz et al. (19)
recently showed that α_1 -adrenergic stimulation enhas
not only 1,4,5-IP₃ and 1,3,4,5-IP₄ but also the cell
content of 1,3,4,6-IP₄ (by 2-fold) and IP₆ (by 1.5-fo recently showed that α_1 -adrenergic stimulation enhances
not only 1,4,5-IP₃ and 1,3,4,5-IP₄ but also the cellular
content of 1,3,4,6-IP₄ (by 2-fold) and IP₆ (by 1.5-fold) in
isolated perfused hearts. These effe not only 1,4,5-IP₃ and 1,3,4,5-IP₄ but also the cellular location of 1,3,4,6-IP₄ (by 2-fold) and IP₆ (by 1.5-fold) in fisolated perfused hearts. These effects were concentration dependent, reaching a maximum at 1 content of 1,3,4,6-IP₄ (by 2-fold) and IP₆ (by 1.5-fold) in fisolated perfused hearts. These effects were concentra-
tion dependent, reaching a maximum at 100 μ M phenyl-
ephrine for IP₃ and IP₄ and at 10 nM for and 1P₆ were significantly augmented at 5 min.

We would like to draw attention to the fact that, in the would like to draw attention to the fact that, in the most studies related to the α_1 -adrenoceptor-mediated for at 1 min, 1,3,4,5-IP₄ increased at 2 min, and 1,3,4,6-IP₄ and IP₆ were significantly augmented at 5 min.
We would like to draw attention to the fact that, in

at 1 mm, 1,0,4,0-114 increased at 2 mm, and 1,0,4,0-114
and IP₆ were significantly augmented at 5 min.
We would like to draw attention to the fact that, in
most studies related to the α_1 -adrenoceptor-mediated
increa We would like to draw attention to the fact that, in

most studies related to the α_1 -adrenoceptor-mediated

increase in labeled inositol phosphatases. Even if this exper-

imental approach is very useful in such exper increase in labeled inositol phosphate, LiCl (10 mM) was used to inhibit inositol phosphatases. Even if this experimental approach is very useful in such experiments, it should be kept in mind that its use may not accu increase in labeled inositol phosphate, LiCl (10
used to inhibit inositol phosphatases. Even if the
imental approach is very useful in such experi
should be kept in mind that its use may not a
reflect the turnover of PI as ed to inhibit inositol phosphatases. Even if this exper-
ental approach is very useful in such experiments, it
ould be kept in mind that its use may not accurately
flect the turnover of PI as it occurs in vivo.
Some patho

mental approach is very useful in such experiments, it
should be kept in mind that its use may not accurately
reflect the turnover of PI as it occurs in vivo.
Some pathological conditions enhance the effect of α_1 -
adr reflect the turnover of PI as it occurs in vivo. In:
Some pathological conditions enhance the effect of α_1 -
adrenoceptor agonists on PI metabolism. For example, of
Xiang and McNeil (1991) observed a higher formation a Some pathological conditions enhance the effect of α_1
adrenoceptor agonists on PI metabolism. For example
Xiang and McNeil (1991) observed a higher formation
of IP₃ in response to α_1 -adrenoceptors in diabetic th adrenoceptor agonists on PI metabolism. For example,
Xiang and McNeil (1991) observed a higher formation
of IP₃ in response to α_1 -adrenoceptors in diabetic than
in control rats. A greater increase, by α_1 -adrenoc Xiang and McNeil (1991) observed a higher for IP₃ in response to α_1 -adrenoceptors in diab
in control rats. A greater increase, by α_1 -adre
stimulation, of 1,4,5-IP₃ was reported in ventric
beculae isolated from of IP₃ in response to α_1 -adrenoceptors in diabetic than
in control rats. A greater increase, by α_1 -adrenoceptor
stimulation, of 1,4,5-IP₃ was reported in ventricular tra-
beculae isolated from malignant hypert in control rats. A greater increase, by α_1 -adrenoceptor
stimulation, of 1,4,5-IP₃ was reported in ventricular tra-
beculae isolated from malignant hyperthermia-suscepti-
ble swine when compared with healthy ones (Sc stimulation, of 1,4,5-IP₃ was reported in ventricular tra-
beculae isolated from malignant hyperthermia-suscepti-
ble swine when compared with healthy ones (Scholz et tion
al., 1991). Hypoxia also affects the α_1 -adr beculae isolated from malignant hyperthermia-suscepti-
ble swine when compared with healthy ones (Scholz et tion
al., 1991). Hypoxia also affects the α_1 -adrenergic effect been
on PI turnover. Canine myocytes exposed f ble swife when compared with healthy ones (Schotz et tal., 1991). Hypoxia also affects the α_1 -adrenergic effect bon PI turnover. Canine myocytes exposed for 10 min to chypoxia exhibit an increase in the production of on PI turnover. Canine myocytes exposed for 10 min to chypoxia exhibit an increase in the production of IP_3 in or response to submaximal concentrations of norepineph-
rine; the EC₅₀ for norepinephrine stimulation in h hypoxia exhibit an increase in the production of IP₃ is
response to submaximal concentrations of norepineph
rine; the EC₅₀ for norepinephrine stimulation in hypoxi
cells was found to be 6-fold lower than in normoxic c response to submaximal concentrations of norepineph-
rine; the EC₅₀ for norepinephrine stimulation in hypoxic
cells was found to be 6-fold lower than in normoxic cells
(Heathers et al., 1989). In neonatal rat ventricula cells was found to be 6-fold lower than in normoxic cells a

(Heathers et al., 1989). In neonatal rat ventricular myo-

cytes, Kagiya et al. (1991b) observed an increase in α_1 -

adrenoceptor-induced inositol phosphate (Figure 1) and the based of the based of the discreption of the addrenoceptor-induced inosited phosphate formation during the first hour of hypoxia. This effect was abolished by a prolonged hypoxia, whereas the basal leve

ENOCEPTORS 151

sitol phosphates increased. In contrast, using the same

cellular model, Steinberg and Alter (1993) observed a

persistent enhancement of α_1 -adrenoceptor-mediated in-15
sitol phosphates increased. In contrast, using the same
cellular model, Steinberg and Alter (1993) observed
persistent enhancement of α_1 -adrenoceptor-mediated in
crease in inositol phosphate by hypoxia up to 6 h. T sitol phosphates increased. In contrast, using the same
cellular model, Steinberg and Alter (1993) observed a
persistent enhancement of α_1 -adrenoceptor-mediated in-
crease in inositol phosphate by hypoxia up to 6 h. T sitol phosphates increased. In contrast, using the solution reduced crease in inositol phosphate by hypoxia up to 6 h. Teffect was attributed to the stimulation of the α_{1A} -rector subtype. cellular mod
persistent en
crease in inc
effect was at
tor subtype.
Regarding rsistent enhancement of α_1 -adrenoceptor-mediated in-
ease in inositol phosphate by hypoxia up to 6 h. This
fect was attributed to the stimulation of the α_{1A} -recep-
r subtype.
Regarding the other limb of the PI pa

crease in inositol phosphate by hypoxia up to 6 h. This
effect was attributed to the stimulation of the α_{1A} -recep-
tor subtype.
Regarding the other limb of the PI pathway, Okumura
et al. (1988) directly measured the effect was attributed to the stimulation of the α_{1A} -receptor subtype.

Regarding the other limb of the PI pathway, Okumura

et al. (1988) directly measured the formation of DAG in

response to the application of $\alpha_$ tor subtype.
Regarding the other limb of the PI pathway, Okumura
et al. (1988) directly measured the formation of DAG in
response to the application of α_1 -adrenoceptor agonists.
 α_1 -Adrenoceptor stimulation produce Regarding the other limb of the PI pathway, Okumu
et al. (1988) directly measured the formation of DAG
response to the application of α_1 -adrenoceptor agonist
 α_1 -Adrenoceptor stimulation produced an increase
DAG ac response to the application of α_1 -adrenoceptor agonists.
 α_1 -Adrenoceptor stimulation produced an increase in DAG accumulation in the myocardium. DAG was measured in vivo in rat hearts using thin-layer chromatograp response to the application of α_1 -adrenoceptor agonists.
 α_1 -Adrenoceptor stimulation produced an increase in
DAG accumulation in the myocardium. DAG was meas-
ured in vivo in rat hearts using thin-layer chromatogr α_1 -Adrenoceptor stimulation produced an increase in DAG accumulation in the myocardium. DAG was measured in vivo in rat hearts using thin-layer chromatography and a flame ionization technique. Bordoni et al. (1991) al DRU accumulation in the injocarium. DRU was measured in vivo in rat hearts using thin-layer chromatography and a flame ionization technique. Bordoni et al. (1991) also demonstrated a DAG accumulation induced by α_1 -adr diomyocytes. iy and a flame ionization technique. Bordoni et al.
991) also demonstrated a DAG accumulation induced
 α_1 -adrenoceptor agonists in cultured neonatal car-
omyocytes.
 α_1 -Adrenergic stimulation increases PKC activity

(1991) also demonstrated a DAG accumulation induced
by α_1 -adrenoceptor agonists in cultured neonatal car-
diomyocytes.
 α_1 -Adrenergic stimulation increases PKC activity and
induces the translocation of this kinase by α_1 -adrenoceptor agonists in cultured neonatal c
diomyocytes.
 α_1 -Adrenergic stimulation increases PKC activity ϵ
induces the translocation of this kinase from the cyto
to the sarcolemma (Henrich and Simpson, diomyocytes.
 α_1 -Adrenergic stimulation increases PKC activity and

induces the translocation of this kinase from the cytosol

to the sarcolemma (Henrich and Simpson, 1988; Mochly-

Rosen et al., 1990; Kaku et al., 19 α_1 -Adrenergic stimulation increases PKC activity and
induces the translocation of this kinase from the cytosol
to the sarcolemma (Henrich and Simpson, 1988; Mochly-
Rosen et al., 1990; Kaku et al., 1991; Otani et al., induces the translocation of this kinase from the cytosol
to the sarcolemma (Henrich and Simpson, 1988; Mochly-
Rosen et al., 1990; Kaku et al., 1991; Otani et al., 1992;
Talosi and Kranias, 1992). In addition, Mochly-Rose to the sarcolemma (Henrich and Simpson, 1988; Mochl
Rosen et al., 1990; Kaku et al., 1991; Otani et al., 199
Talosi and Kranias, 1992). In addition, Mochly-Rosen
al. (1990), using an immunofluorescence technique, r
ported Rosen et al., 1990; Kaku et al., 1991; Otani et al., 1992
Talosi and Kranias, 1992). In addition, Mochly-Rosen e
al. (1990), using an immunofluorescence technique, re
ported that specific isozymes of the kinase were trans Falosi and Kramas, 1992). In addition, Mociny-Rosen et al. (1990), using an immunofluorescence technique, reported that specific isozymes of the kinase were translocated to specific sites inside the cell (membrane, myofil at. (1990), using an immunoindorescence decimique, re-
ported that specific isozymes of the kinase were trans-
located to specific sites inside the cell (membrane, myo-
filaments, and nucleus). α_1 -Adrenergic agonists located to specific sites inside the cell (membrane, myo-
filaments, and nucleus). α_1 -Adrenergic agonists induced
the translocation of the Ca²⁺-insensitive PKC isoform ϵ
to the sarcolemma in both neonatal and adu aments, and nucleus). α_1 -Adrenergic agonists induced
e translocation of the Ca²⁺-insensitive PKC isoform ϵ
the sarcolemma in both neonatal and adult cardio-
yocytes (Bogoyevitch et al., 1993; Pucéat et al., 1993b ementation increases PKC activity and
diomyocytes.
 α_1 -Adrenergic stimulation increases PKC activity and
induces the translocation of this kinase from the cytosol
to the sarcolemma (Henrich and Simpson, 1988; Mochly-
R

to the sarcolemma in both neonatal and adult cardio-
myocytes (Bogoyevitch et al., 1993; Pucéat et al., 1993b).
The hydrolysis of phosphatidylcholine is currently
emerging as a novel transduction pathway activated by
hormo for reviews, see Billah and Anthes, 1990; Exton, 1990).
The hydrolysis of phosphatidylcholine is currently
emerging as a novel transduction pathway activated by
hormones that accelerate PI turnover (Slivka et al., 1988;
fo emerging as a novel transduction pathway activate
hormones that accelerate PI turnover (Slivka et al., 1
for reviews, see Billah and Anthes, 1990; Exton, 19
Phosphatidylcholine breakdown is catalyzed by phos
lipase A_2 , r reviews, see Billah and Anthes, 1990; Exton, 1988;

r reviews, see Billah and Anthes, 1990; Exton, 1990).

hosphatidylcholine breakdown is catalyzed by phospho-

ase A₂, phospholipase C, and phospholipase D.

In numer

for reviews, see Billah and Anthes, 1990; Exton, 1990).
Phosphatidylcholine breakdown is catalyzed by phospholipase A_2 , phospholipase C, and phospholipase D.
In numerous tissues, α_1 -adrenergic stimulation has
been Phosphatidylcholine breakdown is catalyzed by phospho-
lipase A_2 , phospholipase C, and phospholipase D.
In numerous tissues, α_1 -adrenergic stimulation has
been reported to activate phospholipases A_2 (Slivka and
 lipase A_2 , phospholipase C, and phospholipase D.
In numerous tissues, α_1 -adrenergic stimulation has
been reported to activate phospholipases A_2 (Slivka and
Insel, 1987; Weiss and Insel, 1991; for reviews, see Ax In numerous tissues, α_1 -adrenergic stimulation has
been reported to activate phospholipases A_2 (Slivka and
Insel, 1987; Weiss and Insel, 1991; for reviews, see Ax-
elrod et al., 1988 and Insel et al., 1991). The hy Insel, 1987; Weiss and Insel, 1991; for reviews, see Axelrod et al., 1988 and Insel et al., 1991). The hydrolysis of phosphatidylcholine by phospholipase A_2 releases arelrod et al., 1988 and Insel et al., 1991). The hydrolysis elrod et al., 1988 and Insel et al., 1991). The hydrolysis
of phosphatidylcholine by phospholipase A_2 releases ar-
achidonic acid. Arachidonic acid can also be generated
by the degradation of DAG following phospholipas of phosphatidylcholine by phospholipase A_2 releases arachidonic acid. Arachidonic acid can also be generated
by the degradation of DAG following phospholipase C-
induced PIP_2 hydrolysis. Arachidonic acid can activate by the degradation of DAG following phospholipase C-
induced PIP_2 hydrolysis. Arachidonic acid can activate
 PKC by a mechanism different from DAG (for review,
see Bell and Burns, 1991); more specifically, this activa-
 induced PIP_2 hydrolysis. Arachidonic acid can activate PKC by a mechanism different from DAG (for review, see Bell and Burns, 1991); more specifically, this activation does not require phospholipids. Therefore, it ha induced PIP_2 hydrolysis. Arachidonic acid can activate PKC by a mechanism different from DAG (for review, see Bell and Burns, 1991); more specifically, this activation does not require phospholipids. Therefore, PKC by a mechanism different from DAG (for review,
see Bell and Burns, 1991); more specifically, this activa-
tion does not require phospholipids. Therefore, it has
been speculated that arachidonic acid, as well as other
c see Bell and Burns, 1991); more specifically, this activation does not require phospholipids. Therefore, it has been speculated that arachidonic acid, as well as other *cis*-unsaturated fatty acids generated by the hydroly tion does not require phospholipids. Therefore, it has
been speculated that arachidonic acid, as well as other
cis-unsaturated fatty acids generated by the hydrolysis
of phospholipids, could under physiological conditions
 been speculated that arachidonic acid, as well as other cis-unsaturated fatty acids generated by the hydrolysis of phospholipids, could under physiological conditions directly activate cytosoluble PKC without inducing the cis-unsaturated fatty acids generated by the hydrolysis
of phospholipids, could under physiological conditions
directly activate cytosoluble PKC without inducing the
kinase translocation (Khan et al., 1992). Arachidonic
ac of phospholipids, could under physiological conditions
directly activate cytosoluble PKC without inducing the
kinase translocation (Khan et al., 1992). Arachidonic
acid is also further metabolized inside the cell through
t directly activate cytosoluble PKC without inducing the kinase translocation (Khan et al., 1992). Arachidonic acid is also further metabolized inside the cell through three pathways: (*a*) the cyclooxygenase pathway leading kinase translocation (Khan et al., 1992). Arachidonic
acid is also further metabolized inside the cell through
three pathways: (a) the cyclooxygenase pathway leading
to the formation of prostaglandins, (b) the epoxygenase
 acid is also further metabolized inside the cell throut
three pathways: (*a*) the cyclooxygenase pathway leadii
to the formation of prostaglandins, (*b*) the epoxygena
pathway leading to the generation of epoxides, and (
 to the formation of prostaglandins, (b) the epoxygenase pathway leading to the generation of epoxides, and (c) the lipoxygenase pathway which generates the leuko-
trienes. It has been reported that arachidonic acid or i

metabolites could be involved in the α_1 -adrenoceptor-
mediated effect seen in cardiac muscle (Molderings and
Schümann, 1987; Kurachi et al., 1989, 1992).
Phospholipase C-mediated hydrolysis of phosphatidyl-
choline le mediated effect seen in cardiac muscle (Molderings and Schümann, 1987; Kurachi et al., 1989, 1992).
Phospholipase C-mediated hydrolysis of phosphatidylcholine leads to a direct formation of DAG, whereas phospholipase D act Schümann, 1987; Kurachi et al., 1989, 1992). tiat

Phospholipase C-mediated hydrolysis of phosphatidy!

choline leads to a direct formation of DAG, whereas tor

phospholipase D activation generates phosphatidic acid, tial Phospholipase C-mediated hydrolysis of phosphatidyl-
choline leads to a direct formation of DAG, whereas
phospholipase D activation generates phosphatidic acid,
which can be metabolized to DAG. Phosphatidic acid
alone coul choline leads to a direct formation of DAG, whereas
phospholipase D activation generates phosphatidic acid,
which can be metabolized to DAG. Phosphatidic acid
alone could also serve as a genuine second messenger
because ph which can be metabolized to DAG. Phosphatidic acid
alone could also serve as a genuine second messenger
because phosphatidate-dependent phosphorylations
have been reported in several tissues including the heart
(Bocckino e because phosphatidate-dependent phosphorylation
have been reported in several tissues including the he
(Bocckino et al., 1991). Data are now available to supp
the idea that phospholipase D can be coupled to recept
(for re have been reported in several tissues including the (Bocckino et al., 1991). Data are now available to sup the idea that phospholipase D can be coupled to rece (for review, see Thompson et al., 1991). Such a hypesis could (Bocckino et al., 1991). Data are now available to suppote the idea that phospholipase D can be coupled to receptor (for review, see Thompson et al., 1991). Such a hypothesis could potentially be applied to cardiac α_1 the idea that phospholipase D can be coupled to receptors
(for review, see Thompson et al., 1991). Such a hypoth-
esis could potentially be applied to cardiac α_1 -adrenocep-
tors. Moreover, PKC has been shown to activa (for review, see Thompson et al., 1991). Such a hypothesis could potentially be applied to cardiac α_1 -adrenoceptors. Moreover, PKC has been shown to activate phospholipase D in numerous tissues (Martinson et al., 1990 esis could potentially be applied to cardiac α_1 -adrenoceptors. Moreover, PKC has been shown to activate phospholipase D in numerous tissues (Martinson et al., 1990; Conricode et al., 1992). These pathways could be of tors. Moreover, PKC has been shown to activate pholipase D in numerous tissues (Martinson et al., 19
Conricode et al., 1992). These pathways could be of graphysiological importance because sarcolemma conta
much more phosph pholipase D in numerous tissues (Martinson et al., 1990; afferencies of conricode et al., 1992). These pathways could be of great and physiological importance because sarcolemma contains of much more phosphatidylcholine th Conricode et al., 1992). These pathways could be of great
physiological importance because sarcolemma contains
much more phosphatidylcholine than phosphoinositides.
Moreover, DAG generated through these pathways could
be r From DAG generated through these pathways
ponsible for a sustained activation of PKC.
IV. Cellular Effects Resulting from the Stimulation of Cardiac α_1 **-Adrenocepto**
fects on the Cardiac Action Potential and Ion

IV. Cellular Effects Resulting from the
Stimulation of Cardiac α_1 -Adrenoceptors

A. Effects on the Cardiac Activition of Price.
A. Effects on the Cardiac α_1 **-Adrenoceptors**
A. Effects on the Cardiac Action Potential and Ionic
Currents *Currents*

Stimulation of Cardiac α_1 -Adrenoceptors
Effects on the Cardiac Action Potential and Ionic
urrents
Using conventional microelectrode techniques, Pap-
no (1971) demonstrated that the action potential (a A. Effects on the Cardiac Action Potential and Ionic
Currents
Using conventional microelectrode techniques, Pap-
pano (1971) demonstrated that the action potential (at
90% repolarization) of guinea pig atria is prolonged b A. Effects on the Caralac Action Potential and Tonic
Currents
Using conventional microelectrode techniques, Pap-
pano (1971) demonstrated that the action potential (at
90% repolarization) of guinea pig atria is prolonged Using conventional microelectrode techniques, Pappano (1971) demonstrated that the action potential (at 90% repolarization) of guinea pig atria is prolonged by catecholamines in a propranolol-insensitive manner. Following Using conventional microelectrode techniques, Pap-
pano (1971) demonstrated that the action potential (at
90% repolarization) of guinea pig atria is prolonged by
catecholamines in a propranolol-insensitive manner. Fol-
lo pano (1971) demonstrated that the action potential (at 90% repolarization) of guinea pig atria is prolonged by catecholamines in a propranolol-insensitive manner. Following this report, α_1 -adrenergic stimulation has b 90% repolarization) of guinea pig atria is prolonged by catecholamines in a propranolol-insensitive manner. Following this report, α_1 -adrenergic stimulation has been repeatedly shown to increase the duration of cardia cate
cholamines in a propranolol-insensitive manner. Fol-
lowing this report, α_1 -adrenergic stimulation has been
repeatedly shown to increase the duration of cardiac
action potentials in different multicellular myocar lowing this report, α_1 -adrenergic stimulation has been
repeatedly shown to increase the duration of cardiac
action potentials in different multicellular myocardial
preparations from various species, including sheep an repeatedly shown to increase the duration of cardiac
action potentials in different multicellular myocardial
preparations from various species, including sheep and
dog Purkinje fibers (Giotti et al., 1973; Rosen et al.,
19 preparations from various species, including sheep and
dog Purkinje fibers (Giotti et al., 1973; Rosen et al., pott
1977), rabbit atria (Miura and Inui, 1984), rabbit papil-
1987), rabbit atria (Handa et al., 1982), and b 1977), rabbit atria (Miura and Inui, 1984), rabbit papil-
lary muscles (Handa et al., 1982), and bovine ventricular
trabeculae (Brückner and Scholz, 1984). In contrast to
these preparations, the guinea pig ventricle was f 1977), rabbit atria (Miura and Inui, 1984), rabbit papillary muscles (Handa et al., 1982), and bovine ventricular trabeculae (Brückner and Scholz, 1984). In contrast to these preparations, the guinea pig ventricle was foun lary muscles (Handa et al., 1982), and bovine ventricular
trabeculae (Brückner and Scholz, 1984). In contrast to
these preparations, the guinea pig ventricle was found
either to be unresponsive (Ledda et al., 1980; Hesche trabeculae (Brückner and Scholz, 1984). In contrast to ^p
these preparations, the guinea pig ventricle was found S
either to be unresponsive (Ledda et al., 1980; Hescheler n
et al., 1988) or to respond by a decrease in t these preparations, the guinea pig ventricle was found

either to be unresponsive (Ledda et al., 1980; Hescheler

et al., 1988) or to respond by a decrease in the action

in potential duration to α_1 -adrenoceptor agoni et al., 1988) or to respond by a decrease in the action
potential duration to α_1 -adrenoceptor agonists (Dirksen
and Sheu, 1990). Even in very responsive species, such
as the rat, the prolongation of the action potenti potential duration to α_1 -adrenoceptor ago
and Sheu, 1990). Even in very responsive as the rat, the prolongation of the action p
adrenoceptor agonists is more pronounce
in ventricular muscle (Ertl et al., 1991).
In sin In single, isolated ventricular myocytes, such the rat, the prolongation of the action potential by α_1 .

The rate ventricular muscle (Ertl et al., 1991). In single, isolated ventricular myocytes, i.e., a pure curricul

as the rat, the prolongation of the action potential by α_1 -
adrenoceptor agonists is more pronounced in atrial than
in ventricular muscle (Ertl et al., 1991). in
In single, isolated ventricular myocytes, i.e., a pure
 adrenoceptor agonists is more pronounced in atrial th
in ventricular muscle (Ertl et al., 1991).
In single, isolated ventricular myocytes, i.e., a potentiac preparation, catecholamines or synthetic adrenoceptor mimetics us in ventricular muscle (Ertl et al., 1991).

In single, isolated ventricular myocytes, i.e., a pure

cardiac preparation, catecholamines or synthetic α_1 -

adrenoceptor mimetics usually prolong the action poten-

tial d In single, isolated ventricular myocytes, i.e., a pure
cardiac preparation, catecholamines or synthetic α_1 -
adrenoceptor mimetics usually prolong the action poten-
tial duration (Apkon and Nerbonne, 1988; Fedida et al cardiac preparation, catecholamines or synthetic α_1 -
adrenoceptor mimetics usually prolong the action poten-
tial duration (Apkon and Nerbonne, 1988; Fedida et al., Bo
1989; Ravens et al., 1989; Vogel and Terzic, 1989 adrenoceptor mimetics usually prolong the action potential duration (Apkon and Nerbonne, 1988; Fedida et al., Bout 1989; Ravens et al., 1989; Vogel and Terzic, 1989). Vogel nel and Terzic (1989) observed a rapid increase i tial duration (Apkon and Nerbonne, 1988; Fedida et al., 1989; Ravens et al., 1989; Vogel and Terzic, 1989). Vogel and Terzic (1989) observed a rapid increase in the action potential duration in rat cells exposed to epinep 1989; Ravens et al., 1989; Vogel and Terzic, 1989). Vogel nand Terzic (1989) observed a rapid increase in the action were potential duration in rat cells exposed to epinephrine in ferticle presence of propranolol and stim and Terzic (1989) observed a rapid increase in the action potential duration in rat cells exposed to epinephrine in the presence of propranolol and stimulated at 0.15 Hz at 37° C. This effect was concentration depen

ET AL.
90% repolarization to increase by 56%. Prazosin (100
nM) inhibited, whereas lithium chloride (10 mM) poten-ET AL.
90% repolarization to increase by 56%. Prazosin (1
nM) inhibited, whereas lithium chloride (10 mM) pote
tiated, epinephrine's action. ET AL.
90% repolarization to increas
nM) inhibited, whereas lithiu
tiated, epinephrine's action.
Little is known about the is % repolarization to increase by 56%. Prazosin

A) inhibited, whereas lithium chloride (10 mM) p

tted, epinephrine's action.

Little is known about the identity of the α_1 -adrenor

r subtype involved in the modulation

90% repolarization to increase by 56%. Prazosin (1 nM) inhibited, whereas lithium chloride (10 mM) pote tiated, epinephrine's action.
Little is known about the identity of the α_1 -adrenoce tor subtype involved in the m nM) inhibited, whereas lithium chloride (10 mM) potentiated, epinephrine's action.
Little is known about the identity of the α_1 -adrenoceptor subtype involved in the modulation of action potential duration in cardiac c tiated, epinephrine's action.
Little is known about the identity of the α_1 -adrenocep
tor subtype involved in the modulation of action poten
tial duration in cardiac cells. Lee et al. (1991) showed
that in canine Purki Little is known about the identity of the α_1 -adrenoceptor subtype involved in the modulation of action potential duration in cardiac cells. Lee et al. (1991) showed that in canine Purkinje fibers the WB-4101-sensitive tial duration in cardiac cells. Lee et al. (1991) showed
that in canine Purkinje fibers the WB-4101-sensitive
 α_{1A} -receptor subtype mediates the prolongation of repo-
larization via a pertussis toxin-insensitive pathw

In contrast to β -adrenoceptor agonists, which mostly that in canine Purkinje fibers the WB-4101-sensitive α_{1A} -receptor subtype mediates the prolongation of repolarization via a pertussis toxin-insensitive pathway.
In contrast to β -adrenoceptor agonists, which mostly α_{1A} -receptor subtype mediates the prolongation of repolarization via a pertussis toxin-insensitive pathway.
In contrast to β -adrenoceptor agonists, which mostly prolong the plateau phase and do not change or even larization via a pertussis toxin-insensitive pathway.
In contrast to β -adrenoceptor agonists, which mostly
prolong the plateau phase and do not change or even
shorten the final phase of repolarization (Nathan and
Beele In contrast to β -adrenoceptor agonists, which mostly
prolong the plateau phase and do not change or even
shorten the final phase of repolarization (Nathan and
Beeler, 1975), α_1 -adrenoceptor agonists increase the ac prolong the plateau phase and do not change or even
shorten the final phase of repolarization (Nathan and
Beeler, 1975), α_1 -adrenoceptor agonists increase the ac-
tion potential to a similar extent at both 20 and 90%
 shorten the final phase of repolarization (Nathan and Beeler, 1975), α_1 -adrenoceptor agonists increase the action potential to a similar extent at both 20 and 90% repolarization in bovine ventricular trabeculae withou Beeler, 1975), α_1 -adrenoceptor agonists increase the action potential to a similar extent at both 20 and 90% repolarization in bovine ventricular trabeculae without affecting the amplitude of the action potential (Brü tion potential to a similar extent at both 20 and 90% repolarization in bovine ventricular trabeculae without affecting the amplitude of the action potential (Brückner and Scholz, 1984). The ratio of increases in the durat repolarization in bovine ventricular trabeculae without
affecting the amplitude of the action potential (Brückner
and Scholz, 1984). The ratio of increases in the duration
of action potential at 50% to increases in the dur affecting the amplitude of the action potential (Brückner and Scholz, 1984). The ratio of increases in the duration of action potential at 50% to increases in the duration of action potential at 90% was measured to be 0.8 and Scholz, 1984). The ratio of increases in the duration
of action potential at 50% to increases in the duration of
action potential at 90% was measured to be 0.86 in single
rat cells, indicating even a slightly smaller of action potential at 50% to increases in the duration of action potential at 90% was measured to be 0.86 in single rat cells, indicating even a slightly smaller effect of epinephrine (1 to 3 μ M) on the earlier phases action potential at 90% was measured to be 0.86 in single rat cells, indicating even a slightly smaller effect of epinephrine (1 to 3 μ M) on the earlier phases of the action potential repolarization (Vogel and Terzic, rat cells, indicating even a slightly smaller effect
epinephrine (1 to 3 μ M) on the earlier phases of s
action potential repolarization (Vogel and Terzic, 198
In rabbit atria, Ni⁺, which is known to suppress C
curren epinephrine (1 to 3 μ M) on the earlier phases of the action potential repolarization (Vogel and Terzic, 1989).
In rabbit atria, Ni⁺, which is known to suppress Ca²⁺ current, does not affect the prolonging effect of action potential repolarization (Vogel and Terzic, 1989).
In rabbit atria, Ni⁺, which is known to suppress Ca^{2+}
current, does not affect the prolonging effect of phenyl-
ephrine at 90% repolarization. The Na⁺ chann In rabbit atria, Ni⁺, which is known to suppress Ca^{2+}
current, does not affect the prolonging effect of phenyl-
ephrine at 90% repolarization. The Na⁺ channel blocker,
tetrodotoxin, also does not affect the prolong current, does not affect t
ephrine at 90% repolariza
tetrodotoxin, also does n
of phenylephrine on the (Miura and Inui, 1984).
Phenylephrine also pro hrine at 90% repolarization. The Na⁺ channel blo
trodotoxin, also does not affect the prolonging e
phenylephrine on the duration of the action pote
fiura and Inui, 1984).
Phenylephrine also prolongs or restores Ca²⁺-d

derivologian, also does not antect the prolonging enect
of phenylephrine on the duration of the action potential
(Miura and Inui, 1984).
Phenylephrine also prolongs or restores Ca^{2+} -depend-
ent (slow) action potentials (Miura and Inui, 1984).

Phenylephrine also prolongs or restores Ca²⁺-depend

ent (slow) action potentials in partially depolarized prep

arations (Miura et al., 1978; Handa et al., 1982; Brückne

and Scholz, 1984). It ent (slow) action potentials in partially depolarized preparations (Miura et al., 1978; Handa et al., 1982; Brückner and Scholz, 1984). It was proposed that α_1 -adrenoceptor agonists increase this current to a small ex agonists increase this current to a small extent, assuming potential reflects the Ca^{2+} inward current. d Scholz, 1984). It was proposed that α_1 -adrenoceptor

onists increase this current to a small extent, assuming

at the maximum rate of increase of the slow action

tential reflects the Ca²⁺ inward current.

When th

potential duration to α_1 -adrenoceptor agonists (Dirksen
and Sheu, 1990). Even in very responsive species, such difficult in multicellular preparations to separate the
as the rat, the prolongation of the action potenti agonists increase this current to a small extent, assuming
that the maximum rate of increase of the slow action
potential reflects the Ca^{2+} inward current.
When the slow I_{Ca} is directly measured, increases in
 I_{Ca} that the maximum rate of increase of the slow action
potential reflects the Ca²⁺ inward current.
When the slow I_{Ca} is directly measured, increases in
 I_{Ca} are rarely observed even if the action potential is
prolong potential reflects the Ca²⁺ inward current.
When the slow I_{Ca} is directly measured, increases in I_{Ca} are rarely observed even if the action potential iprolonged by α_1 -adrenoceptor stimulation. Brückner an Scho I_{Ca} are rarely observed even if the action potential is prolonged by α_1 -adrenoceptor stimulation. Brückner and prolonged by α_1 -adrenoceptor stimulation. Brückner and Scholz (1984), using the sucrose-gap voltage clamp technique on bovine ventricular trabeculae, found an increase in peak I_{C_a} induced by phenylephrine as well difficult in multicellular trabeculae, found an increase
in peak I_{C_a} induced by phenylephrine as well as a slowing
down in the inactivation of this current. Because it is
difficult in multicellular preparations to sep down in the inactivation of this current. Because it is difficult in multicellular preparations to separate the $Ca²⁺$ current from overlapping outward $K⁺$ currents, it may also be difficult to determine whether a net increase
in inward current resulted from an increase in inward
current or from a decrease in outward currents. Apkon
and Nerbonne (1988), Hartmann et al. (1988), Hescheler
e may also be difficult to determine whether a net increase
in inward current resulted from an increase in inward
current or from a decrease in outward currents. Apkon
and Nerbonne (1988), Hartmann et al. (1988), Hescheler
e in inward current resulted from an increase in inward
current or from a decrease in outward currents. Apkor
and Nerbonne (1988), Hartmann et al. (1988), Heschele
et al. (1988), Ravens et al. (1989), Ertl et al. (1991)
Bout current or from a decrease in outward currents. Apkon
and Nerbonne (1988), Hartmann et al. (1988), Hescheler
et al. (1988), Ravens et al. (1989), Ertl et al. (1991),
Boutjdir et al. (1992), Fedida and Bouchard (1992), Jahand Nerbonne (1988), Hartmann et al. (1988), Hescheler
et al. (1988), Ravens et al. (1989), Ertl et al. (1991),
Boutjdir et al. (1992), Fedida and Bouchard (1992), Jah-
nel et al. (1992b), and Terzic et al. (1992a), using et al. (1988), Ravens et al. (1989), Ertl et al. (1991),
Boutjdir et al. (1992), Fedida and Bouchard (1992), Jah-
nel et al. (1992b), and Terzic et al. (1992a), using the
whole-cell patch clamp method in rabbit, guinea pi Boutjdir et al. (1992), Fedida and Bouchard (1992), Jahnel et al. (1992b), and Terzic et al. (1992a), using the whole-cell patch clamp method in rabbit, guinea pig, feline, or rat ventricular or atrial cells, found no inc nel et al. (1992b), and Terzic et al. (1992a), using the
whole-cell patch clamp method in rabbit, guinea pig,
feline, or rat ventricular or atrial cells, found no increase
in I_{C_a} following α_1 -adrenoceptor stimulat whole-cell patch clamp method in rabbit, guinea pig,
feline, or rat ventricular or atrial cells, found no increase
in I_{Ca} following α_1 -adrenoceptor stimulation. These ex-
periments were conducted under conditions i

aspet

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

CARDIAC α_1 -AD
ventricular cells, Alvarez et al. (1987) observed an in-
crease in I_{Ca} following phenylephrine stimulation. This **CARDIAC** α_1 -ADR

ventricular cells, Alvarez et al. (1987) observed an in-

crease in I_{Ca} following phenylephrine stimulation. This

effect was more pronounced on the T-type Ca^{2+} current

in frog atrial cells in ventricular cells, Alvarez et al. (1987) observed an in-
crease in I_{Ca} following phenylephrine stimulation. This (I_{ki})
effect was more pronounced on the T-type Ca²⁺ current tox
in frog atrial cells in which a 117% i effect was more pronounced on the T-type Ca^{2+} current
in frog atrial cells in which a 117% increase was reported
compared to 48% for the L-type current (Alvarez and
Vassort, 1992). Similarly, an increase in T-type Ca^{2 In 110g atrial cells in which a 117% increase was reported
compared to 48% for the L-type current (Alvarez and
Vassort, 1992). Similarly, an increase in T-type Ca²⁺
current is observed in canine ventricular and Purkinje Vassort, 1992). Similarly, an increase in T-type Ca²⁺
current is observed in canine ventricular and Purkinje
cells (Tseng and Boyden, 1989). The mechanism of ac-
tion of the α_1 -adrenoceptor agonist on T-type Ca²⁺ current is observed in canine ventricular and Purking
cells (Tseng and Boyden, 1989). The mechanism of action of the α_1 -adrenoceptor agonist on T-type Ca²⁺ current is unknown. Recent observations of canine Purking
c cells (Tseng and Boyden, 1989). The mechanism of action of the α_1 -adrenoceptor agonist on T-type Ca²⁺ current is unknown. Recent observations of canine Purkinje cells suggest that the T-type Ca²⁺ current can be tr concentration (Tseng and Byden, 1991) as has been
concentration (Tseng and Byden, 1991) as has been by
described in smooth muscle of the rat portal vein (Pacaud in
et al., 1987). More recently, phenylephrine was shown to cells suggest that the T-type Ca^{2+} current can be tran-
siently increased by increasing the intracellular Ca^{2+} cellu
concentration (Tseng and Byden, 1991) as has been by I
described in smooth muscle of the rat porta siently increased by increasing the intracellular C
concentration (Tseng and Byden, 1991) as has be
described in smooth muscle of the rat portal vein (Pace
et al., 1987). More recently, phenylephrine was shown
increase th described in smooth muscle of the rat portal vein (Pacaud et al., 1987). More recently, phenylephrine was shown to increase the L-type Ca^{2+} current in neonatal rat ventricular cells, an effect that occurred within 20 m et al., 1987). More recently, phenylephrine was shown to
increase the L-type Ca²⁺ current in neonatal rat ventric-
ular cells, an effect that occurred within 20 min (Liu et
al., 1992).
In rat ventricular myocytes, α_1 al., 1987). More recently, phenylephrine was shown to
crease the L-type Ca²⁺ current in neonatal rat ventric-
ar cells, an effect that occurred within 20 min (Liu et
, 1992).
In rat ventricular myocytes, α_1 -adrenoce

increase the L-type Ca^{2+} current in neonatal rat ventric-
ular cells, an effect that occurred within 20 min (Liu et
al., 1992).
In rat ventricular myocytes, α_1 -adrenoceptor agonists
decrease the L-type I_{Ca} when ular cells, an effect that occurred within 20 min (Liu et b
al., 1992).
In rat ventricular myocytes, α_1 -adrenoceptor agonists a
decrease the L-type I_{Ca} when this Ca^{2+} current is en-
hanced by β -adrenoceptor s al., 1992).
In rat ventricular myocytes, α_1 -adrenoceptor agonists
decrease the L-type I_{Ca} when this Ca^{2+} current is en-
hanced by β -adrenoceptor stimulation or by forskolin
(Boutjdir et al., 1992). However, In fat ventricular myocytes, α_1 -autenoceptor agonists act
decrease the L-type I_{Ca} when this Ca^{2+} current is encyt
hanced by β -adrenoceptor stimulation or by forskolin gui
(Boutjdir et al., 1992). However, α decrease the L-type I_{CA} when this Ca current is enhanced by β -adrenoceptor stimulation or by forskolin (Boutjdir et al., 1992). However, α_1 -adrenoceptor agonists do not inhibit I_{CA} if this current is increase Hanced by p-adienceptor simulation of by fors
(Boutjdir et al., 1992). However, α_1 -adrenceptor
nists do not inhibit I_{Ca} if this current is increase
intracellular perfusion of cAMP, even though thes
onists may stimu nists do not inhibit I_{Ca} if this current is increased by may be due to the absence of I_{to} channels (presumed to intracellular perfusion of cAMP, even though these ag-
be responsible for the prolonging effect observe nists do not inhibit I_{C_a} if this current is increased by r
intracellular perfusion of cAMP, even though these ag-
onists may stimulate the cAMP-phosphodiesterase r
(Buxton and Brunton, 1985a). Boutjdir et al. (1992)
p intracellular perfusion of cAMP, even though these ag-
onists may stimulate the cAMP-phosphodiesterase r
(Buxton and Brunton, 1985a). Boutjdir et al. (1992)
proposed that the α_1 -adrenoceptor-mediated inhibition
of β onists may stimulate the cAMP-ph
(Buxton and Brunton, 1985a). Boutjd
proposed that the α_1 -adrenoceptor-med
of β -adrenoceptor-activated I_{Ca} is due t
G-protein coupled to adenylate cyclase.
 α_1 -Adrenergic agoni Suxton and Brunton, 1985a). Boutjdir et al. (1992)
oposed that the α_1 -adrenoceptor-mediated inhibition
 β -adrenoceptor-activated I_{Ca} is due to an inhibitory
protein coupled to adenylate cyclase.
 α_1 -Adrenergic

proposed that the α_1 -adrenoceptor-mediated inhibition
of β -adrenoceptor-activated I_{Ca} is due to an inhibitory
G-protein coupled to adenylate cyclase.
 α_1 -Adrenergic agonists decrease K⁺ outward current:
in of β -adrenoceptor-activated I_{Ca} is due to an inhibitory

G-protein coupled to adenylate cyclase. I
 α_1 -Adrenergic agonists decrease K⁺ outward currents

in cardiomyocytes isolated from rat (Apkon and Ner-

bonn G-protein coupled to adenylate cyclase.
 α_1 -Adrenergic agonists decrease K⁺ outward currents

in cardiomyocytes isolated from rat (Apkon and Ner-

bonne, 1988; Ravens et al., 1989; Tohse et al., 1990; Ertl

et al., α_1 -Autenergic agomsus decrease K outward currents differentially in cardiomyocytes isolated from rat (Apkon and Ner-86) bonne, 1988; Ravens et al., 1989; Tohse et al., 1990; Ertl indet al., 1991; Fedida and Bouchard, bonne, 1988; Ravens et al., 1989; Tohse et al., 1990; Ei
et al., 1991; Fedida and Bouchard, 1992) and rabb
hearts (Fedida et al., 1989, 1990). Specifically, it has be
reported that α_1 -adrenergic stimulation decreases et al., 1991; Fedida and Bouchard, 1992) and rabbit
hearts (Fedida et al., 1989, 1990). Specifically, it has been
reported that α_1 -adrenergic stimulation decreases both
the peak and the late current component of the (hearts (Fedida et al., 1989, 1990). Specifically, it has been reported that α_1 -adrenergic stimulation decreases bothe peak and the late current component of the (time dependent) I_{to} (Wang et al., 1991). Fedida et a reported that α_1 -adrenergic stimulation decreases both I_k ,
the peak and the late current component of the (time-
dependent) I_{ω} (Wang et al., 1991). Fedida et al. (1989) in
suggested that the decrease in I_{ω} dependent) I_{to} (Wang et al., 1991). Fedida et al. (1989) in guinea pig ventricular cells suggested that the α_1 -
suggested that the decrease in I_{to} could provide an expla-
nation for the α_1 -adrenoceptor-induced suggested that the decrease in I_{to} could provide an expla-
adrenoceptor agonist norepinephrine, in the presence of
nation for the α_1 -adrenoceptor-induced increase in the β -blocker propranolol, activated a chlori suggested that the decrease in I_{∞} could provide an explemation for the α_1 -adrenoceptor-induced increase in t
action potential duration. Inositol phosphates, PKC, an
a pertussis toxin sensitive G-protein appeared nation for the α_1 -adrenoceptor-induced increase in the action potential duration. Inositol phosphates, PKC, and a pertussis toxin sensitive G-protein appeared not to be involved in transducing the α_1 -adrenoceptora pertussis toxin sensitive G-protein appeared not to be childrenotical intensity of protein appeared not to be childrenoceptor in transducing the α_1 -adrenoceptor-mediated Inhibition of I_{ω} (Braun et al., 1990); T a pertussis want sensitive G-protein appeared not to be
involved in transducing the α_1 -adrenoceptor-mediated
inhibition of I_{to} (Braun et al., 1990; Tohse et al., 1990).
Stimulation of both α_1 -adrenoceptor subty inhibition of I_{to} (Braun et al., 1990; Tohse et al., 1990).
Stimulation of both α_1 -adrenoceptor subtypes, α_{1A} and α_{1B} , contributes to the phenylephrine-induced reduction
in I_{to} of isolated rat myocytes inhibition of I_{∞} (Braun et al., 1990; Tohse et al., 1990). erable Stimulation of both α_1 -adrenoceptor subtypes, α_{1A} and reg α_{1B} , contributes to the phenylephrine-induced reduction serin I_{∞} of iso Stimulation of both α_1 -adrenoceptor subtypes, α_{1A} and α_{1B} , contributes to the phenylephrine-induced reduction in I_{to} of isolated rat myocytes (Wang et al., 1991). Specifically, stimulation of both adrenoc α_{1B} , contributes to the phenylephrine-induced reduction
in I_{to} of isolated rat myocytes (Wang et al., 1991). Spe-
cifically, stimulation of both adrenoceptor subtypes is
required for the reduction of the peak curr in I_{to} of isolated rat myocytes (Wang et al., 1991). Specifically, stimulation of both adrenoceptor subtypes is required for the reduction of the peak current component of I_{to} , whereas stimulation of either th cifically, stimulation of both advergined for the reduction of the pof I_{to} , whereas stimulation of eith subtype is sufficient for the reduction
component (Wang et al., 1991). Following 4-aminopyridine tree quired for the reduction of the peak current component I_{to} , whereas stimulation of either the α_{1A} - or the α_{1B} -
btype is sufficient for the reduction of the late current deponent (Wang et al., 1991).
Following

subtype is sufficient for the reduction of the late current domponent (Wang et al., 1991).

Following 4-aminopyridine treatment to block I_{to} , α_1 -

radrenoceptor agonists decrease the magnitude of two

inward rec component (Wang et al., 1991).

Following 4-aminopyridine treatment to block ladrenoceptor agonists decrease the magnitude cinward rectifying K^+ currents: (*a*) the inwardly rect background current, I_{k1} , and (*b*) Following 4-aminopyridine treatment to block I_{to} , α_1 -
adrenoceptor agonists decrease the magnitude of two
inward rectifying K^+ currents: (*a*) the inwardly rectifying tie
background current, I_{k1} , and (

effect was more pronounced on the T-type Ca²⁺ current toxin and does not involve the activation of PKC (Fedida in frog atrial cells in which a 117% increase was reported et al., 1991; Braun et al., 1992). α_1 -Adrener ENOCEPTORS 153
 α_1 -adrenergic effect on inward rectifying K⁺ channels
 $(I_{k1}$ and I_{kAch}) was reported to be insensitive to pertussis ENOCEPTORS 153
 α_1 -adrenergic effect on inward rectifying K⁺ channels
 $(I_{k1}$ and I_{kAch}) was reported to be insensitive to pertussis

toxin and does not involve the activation of PKC (Fedida ENOCEPTORS 153
 α_1 -adrenergic effect on inward rectifying K⁺ channels
 $(I_{k1}$ and $I_{k \text{ Ach}}$) was reported to be insensitive to pertussis

toxin and does not involve the activation of PKC (Fedida

et al., 1991; Bra α_1 -adrenergic effect on inward rectifying K⁺ channels (I_{k1} and I_{kAch}) was reported to be insensitive to pertussis toxin and does not involve the activation of PKC (Fedida et al., 1991; Braun et al., 1992). $\$ a_1 -adrenergic effect on inward rectifying it chank
(I_{k1} and I_{kAch}) was reported to be insensitive to pertu
toxin and does not involve the activation of PKC (Fee
et al., 1991; Braun et al., 1992). α_1 -Adrenerg (I_{k1} and I_{kAch}) was reported to be insensitive to pertussis toxin and does not involve the activation of PKC (Fedida et al., 1991; Braun et al., 1992). α_1 -Adrenergic agonists also reduce the steady state curren with and does not invoive the activation of \overline{F} red et al., 1991; Braun et al., 1992). α_1 -Adrenergic agon also reduce the steady state current and I_k in rat cardivocytes (Ravens et al., 1989; Tohse et al., 1990 et al., 1991; Braun et al., 1992). α_1 -Adrener
also reduce the steady state current and I_k in
yocytes (Ravens et al., 1989; Tohse et al., 1
et al., 1991) and decrease the background lance in Purkinje fibers (Shah et So reduce the steady state current and I_k in rat cardiom-
cytes (Ravens et al., 1989; Tohse et al., 1990; Jahnel
al., 1991) and decrease the background K^+ conduct-
ce in Purkinje fibers (Shah et al., 1988).
In guinea

yocytes (Ravens et al., 1989; Tohse et al., 1990; Jahnel
et al., 1991) and decrease the background K^+ conduct-
ance in Purkinje fibers (Shah et al., 1988).
In guinea pig, contrary to rat, ventricular myocytes,
phenylep et al., 1991) and decrease the background K^+ conduc
ance in Purkinje fibers (Shah et al., 1988).
In guinea pig, contrary to rat, ventricular myocyte
phenylephrine (10 to 30 μ M) increased the I_k (Tohse α
al., 19 In guinea pig, contrary to rat, ventricular myocytes,
phenylephrine (10 to 30 μ M) increased the I_k (Tohse et
al., 1987b, 1992). This effect was observed when intra-
cellular Ca²⁺ was clamped to pCa 8. It was reprod in guinea pig, contrary to rat, ventricular inyotytes
phenylephrine (10 to 30 μ M) increased the I_k (Tohse e
al., 1987b, 1992). This effect was observed when intra
cellular Ca²⁺ was clamped to pCa 8. It was reproduc phenylephilite (10 to 50 μ m) increased the r_k (1 onse et al., 1987b, 1992). This effect was observed when intracellular Ca²⁺ was clamped to pCa 8. It was reproduced by PKC activators, occluded by pretreatment with cellular Ca²⁺ was clamped to pCa 8. It was reproduced
by PKC activators, occluded by pretreatment with max-
imally effective concentrations of PKC activators, and
blocked by PKC inhibitors (Tohse et al., 1987b, 1992).
H by PKC activators, occluded by pretreatment with maximally effective concentrations of PKC activators, and blocked by PKC inhibitors (Tohse et al., 1987b, 1992). Hence, this α_1 -adrenoceptor-mediated increase in I_k m blocked by PKC inhibitors (Tohse et al., 1987b, 1992)
Hence, this α_1 -adrenoceptor-mediated increase in I_k ma
be related to an activation of PKC. The increase in I
could explain why α_1 -adrenoceptor agonists decre Hence, this α_1 -adrenoceptor-mediated increase in I_k may
be related to an activation of PKC. The increase in I_k
could explain why α_1 -adrenoceptor agonists decrease the
action potential duration in guinea pig ve guinea pig ventricle and other species with respect to the could explain why α_1 -adrenoceptor agonists decrease the action potential duration in guinea pig ventricular myocytes (Dirksen and Sheu, 1990). The difference could explain why α_1 -adrenoceptor agomsts decrease the
action potential duration in guinea pig ventricular myo-
cytes (Dirksen and Sheu, 1990). The difference between
guinea pig ventricle and other species with respec action potential duration in guinea pig ventricular myocytes (Dirksen and Sheu, 1990). The difference between
guinea pig ventricle and other species with respect to the
 α_1 -adrenergic effects on the duration of action cytes (Dirksen and Sheu, 1990). The difference between
guinea pig ventricle and other species with respect to the
 α_1 -adrenergic effects on the duration of action potentials
may be due to the absence of I_{to} channels α_1 -adrenergic effects on the duration of action potentials
may be due to the absence of I_{to} channels (presumed to
be responsible for the prolonging effect observed in the
rat, rabbit, and other species) from guinea cells (Tohse et al., 1992).

In guinea pig atria, Kurachi et al. (1989) demonstrated

that α_1 -adrenoceptor stimulation activates the I_{k Ach}.

rat, rabbit, and other species) from guinea pig ventricular cells (Tohse et al., 1992).

In guinea pig atria, Kurachi et al. (1989) demonstrated

that α_1 -adrenoceptor stimulation activates the I_k α_0 .

Phenylephr In guinea pig atria, Kurachi et al. (1989) demonstrated In guinea pig atria, Kuratin et al. (1969) demonstrated
that α_1 -adrenoceptor stimulation activates the I_k $_{\text{Ach}}$.
Phenylephrine-induced activation was prevented by nor-
dihydroguaiaretic acid, a lipoxygenase inhi Phenylephrine-induced activation was prevented by nor-
dihydroguaiaretic acid, a lipoxygenase inhibitor, and AA-
861, a 5-lipoxygenase inhibitor, but was not affected by
indomethacin, a cycloxygenase inhibitor. It was con dihydroguaiaretic acid, a lipoxygenase inhibitor, and AA-
861, a 5-lipoxygenase inhibitor, but was not affected by
indomethacin, a cycloxygenase inhibitor. It was con-
cluded that 5-lipoxygenase metabolites of arachidonic 861, a 5-lipoxygenase inhibitor, but was indomethacin, a cycloxygenase inhibitor
cluded that 5-lipoxygenase metabolites
acid may be involved in the α_1 -adrenergi
 $I_{k \text{ Ach}}$ (reviewed by Kurachi et al., 1992).
In additi domethacin, a cycloxygenase inhibitor. It was con-
ided that 5-lipoxygenase metabolites of arachidonic
id may be involved in the α_1 -adrenergic activation of
 α_{ch} (reviewed by Kurachi et al., 1992).
In addition to K

in guinear pieza di I_{k Ach} (reviewed by Kurachi et al., 1992).

In addition to K⁺ currents, a recent study performed

in guinea pig ventricular cells suggest It Ach (reviewed by Kuracin et al., 1992).
In addition to K^+ currents, a recent study perform
in guinea pig ventricular cells suggested that the
adrenoceptor agonist norepinephrine, in the presence
the β -blocker pro in guinea pig ventricular cells suggested that the α_1 adrenoceptor agonist norepinephrine, in the presence of renoceptor agonist norepinephrine, in the presence of
e β -blocker propranolol, activated a chloride conduct-
ce (Walsh, 1991; Ackerman and Clapham, 1993). This
loride conductance was PKC dependent.
In summary, α_1 -a

ance (Walsh, 1991; Ackerman and Clapham, 1993). This
chloride conductance was PKC dependent.
In summary, α_1 -adrenoceptor agonists modulate sev-
eral conductances in heart muscle. In some cases, this
regulation does no In summary, α_1 -adrenoceptor agonists modulate several conductances in heart muscle. In some cases, this regulation does not depend on PKC or a pertussis toxinsensitive G-protein; in others, it does, suggesting a multi In summary, α_1 -aurence poor agons is modulate several conductances in heart muscle. In some cases, this regulation does not depend on PKC or a pertussis toxinsensitive G-protein; in others, it does, suggesting a multi gulation does not depend on PKC or a pertussis toxin-
nsitive G-protein; in others, it does, suggesting a mul-
plicity of subcellular coupling processes (for review, see
idoh, 1991).
The effects of the α_1 -adrenoceptor

of I_{∞} , whereas stimulation of either the α_{1A} - or the α_{1B} -resting membrane potential varies with the tissue. In-
subtype is sufficient for the reduction of the late current deed, it has been reported that sensitive G-protein; in others, it does, suggesting a multiplicity of subcellular coupling processes (for review, see Endoh, 1991).
The effects of the α_1 -adrenoceptor stimulation on the resting membrane potential vari tiplicity of subcellular coupling processes (for review, s
Endoh, 1991).
The effects of the α_1 -adrenoceptor stimulation on t
resting membrane potential varies with the tissue. I
deed, it has been reported that α_1 -Endoh, 1991).

The effects of the α_1 -adrenoceptor stimulation on the

resting membrane potential varies with the tissue. In-

deed, it has been reported that α_1 -adrenoceptor stimu-

lation depolarizes, hyperpolari The effects of the α_1 -adrenoceptor stimulation on the
resting membrane potential varies with the tissue. In-
deed, it has been reported that α_1 -adrenoceptor stimu-
lation depolarizes, hyperpolarizes, or does not c deed, it has been reported that α_1 -adrenoceptor stimulation depolarizes, hyperpolarizes, or does not change the resting membrane potential. Miura and Inui (1984) showed that α_1 -adrenoceptor stimulation produces a deed, it has been reported that α_1 -adrenoceptor stimulation depolarizes, hyperpolarizes, or does not change the resting membrane potential. Miura and Inui (1984) showed that α_1 -adrenoceptor stimulation produces a lation depolarizes, hyperpolarizes, or does not change the
resting membrane potential. Miura and Inui (1984)
showed that α_1 -adrenoceptor stimulation produces a par-
tial depolarization of the resting membrane potentia resting membrane potential. Miura and Inui (1984)
showed that α_1 -adrenoceptor stimulation produces a par-
tial depolarization of the resting membrane potential in
the rabbit atrium. More recently, Jahnel et al. (1991)

 154 TERZIC ET AL. 154
depolarization in rat heart atria. This depolarization was
attributed to the decrease in K⁺ currents in the presence un 154 TERZIC Exercise 154
depolarization in rat heart atria. This depolarization was
attributed to the decrease in K⁺ currents in the presence
of a depolarizing Na⁺ inward current. However, in mul-TERZIC E
depolarization in rat heart atria. This depolarization was
attributed to the decrease in K^+ currents in the presence
of a depolarizing Na^+ inward current. However, in mul-
ticellular ventricular preparations depolarization in rat heart atria. This depolarization wa
attributed to the decrease in K^+ currents in the presenc
of a depolarizing Na⁺ inward current. However, in mul
ticellular ventricular preparations or in Purki depolarization in rat heart atria. This depolarization was veattributed to the decrease in K^+ currents in the presence urof a depolarizing Na⁺ inward current. However, in mul-
ticellular ventricular preparations or i attributed to the decrease in K^+ currents in the presence
of a depolarizing Na^+ inward current. However, in mul-
ticellular ventricular preparations or in Purkinje myo-
cytes, α_1 -adrenoceptor stimulation hyperpol of a depolarizing Na⁺ inward current. However, in multicellular ventricular preparations or in Purkinje myocytes, α_1 -adrenoceptor stimulation hyperpolarizes the membrane (Tohse et al., 1987b; Shah et al., 1988). Whe ticellular ventricular preparations or in Purkinje myocytes, α_1 -adrenoceptor stimulation hyperpolarizes the omembrane (Tohse et al., 1987b; Shah et al., 1988). 1 Whereas Tohse et al. (1987b) reported that the Na⁺/K cytes, α_1 -adrenoceptor stimulation hyperpolarizes the omembrane (Tohse et al., 1987b; Shah et al., 1988).
Whereas Tohse et al. (1987b) reported that the Na⁺/K⁺
pump was not involved in this α_1 -adrenoceptor med Whereas Tohse et al., 1967b, Shan et al., 1966).
Whereas Tohse et al. (1987b) reported that the Na⁺/K⁺ r
pump was not involved in this α_1 -adrenoceptor mediated
effect, Shah et al. (1988) and Ertl et al. (1991) att pump was not involved in this α_1 -adrenoceptor mediated
effect, Shah et al. (1988) and Ertl et al. (1991) attributed
this hyperpolarizing action to the stimulation of the Na⁺/
K⁺ pump because, in their experimental effect, Shah et al. (1988) and Ertl et al. (1991) attributhis hyperpolarizing action to the stimulation of the N
K⁺ pump because, in their experimental conditions
was abolished by digitalis glycosides. A ouabain-sensiti this hyperpolarizing action to the stimulation of the Na⁺/ μ K⁺ pump because, in their experimental conditions, it in was abolished by digitalis glycosides. A ouabain-sensitive the hyperpolarization induced by α_1 K⁺ pump because, in their experimental conditions, it intr
was abolished by digitalis glycosides. A ouabain-sensitive tor-
hyperpolarization induced by α_1 -adrenoceptor stimula-
was
tion has also been reported in rat was abolished by digitalis glycosides. A ouabain-sensitive to
hyperpolarization induced by α_1 -adrenoceptor stimula-
tion has also been reported in rat atrial muscle (Terzic H⁺
et al., 1991). In isolated rat ventricu hyperpolarization induced by α_1 -adrenoceptor stimulation has also been reported in rat atrial muscle (Terzicet al., 1991). In isolated rat ventricular myocytes, no significant effect on resting membrane potential has notion has also been reported in rat attraitmistic (Terzic 11
et al., 1991). In isolated rat ventricular myocytes, no
observed following the addition of α_1 -adrenoceptor ago-
nists (Ertl et al., 1991). Ertl et al. (199 observed following the addition of α_1 -adrenoceptor agonists (Ertl et al., 1991). Ertl et al. (1991) suggested that cells in isolation respond differently to a Na⁺/K⁺ pump stimulation than do cells in their natural nists (Ertl et al., 1991). Ertl et al. (1991) suggested that cells in isolation respond differently to a Na⁺/K⁺ pump stimulation than do cells in their natural environment.
B. Effects on Intracellular H⁺, *Na⁺*,

Ionic Transport Mechanisms
B. Effects on Intracellular Honic Transport Mechanism

B. Effects on Intracellular H^+ , Na^+ , and Ca^{2+} and on conic Transport Mechanisms at α_1 -Adrenoceptor agonists produce an intracellular al-
kalinization. This finding has been described in atria no (Terzic et al. (B). Effects on Intracement H , Iva, and Ca and on
Ionic Transport Mechanisms
 α_1 -Adrenoceptor agonists produce an intracellular al-
kalinization. This finding has been described in atria
(Terzic et al., 1991), perfuse α_1 -Adrenoceptor agonists produce an intracellular al-
kalinization. This finding has been described in atria no
(Terzic et al., 1991), perfused hearts (Fuller et al., 1991), this
single isolated ventricular cardiomyoc kalinization. This finding has been described in atria (Terzic et al., 1991), perfused hearts (Fuller et al., 1991), single isolated ventricular cardiomyocytes (Astarie et al., 1991; Gambassi et al., 1992; Terzic et al., 1 (Terzic et al., 1991), perfused hearts (Fuller et al., 1991),
single isolated ventricular cardiomyocytes (Astarie et al.,
1991; Gambassi et al., 1992; Terzic et al., 1992a; Pucéat
et al., 1993a), cardiac cells in suspensio single isolated ventricular cardiomyocytes (Astarie et al., 1991; Gambassi et al., 1992; Terzic et al., 1992a; Pucéat
et al., 1993a), cardiac cells in suspension (Iwakura et al., 1990; Wallert and Fröhlich, 1992), and Purk 1991; Gambassi et al., 1992; Terzic et al., 1992a; Pucéat
et al., 1993a), cardiac cells in suspension (Iwakura et al.,
1990; Wallert and Fröhlich, 1992), and Purkinje fibers
(Breen and Pressler, 1988; Pressler et al., 1989 1990; Wallert and Fröhlich, 1992), and Purkinje fibers (Breen and Pressler, 1988; Pressler et al., 1989; see, however, Guo et al., 1992). To measure pH_i, ion-selective microelectrodes (Terzic et al., 1991) and pH_i-sen (Breen and Pressler, 1988; Pressler et al., 1989; see, l
however, Guo et al., 1992). To measure pH_i, ion-selective
microelectrodes (Terzic et al., 1991) and pH_i-sensitive
fluorescent indicators (Iwakura et al., 1990; however, Guo et al., 1992). To measure pH_i, ion-
microelectrodes (Terzic et al., 1991) and pH_i-
fluorescent indicators (Iwakura et al., 1990; Ga
al., 1992; Terzic et al., 1992a; Wallert and Fröhli
have been used. In ad microelectrodes (Terzic et al., 1991) and pH_i-sensitive PH
fluorescent indicators (Iwakura et al., 1990; Gambassi et al., 1992; Terzic et al., 1992a; Wallert and Fröhlich, 1992) pe
have been used. In addition, $[^{14}C]5$ fluorescent indicators (Iwakura et al., 1990; Gambassi et ad., 1992; Terzic et al., 1992a; Wallert and Fröhlich, 1992) phave been used. In addition, $[^{14}C]5,5'$ -dimethyloxazoli-adine-2,4-dione, a compound that partition al., 1992; Terzic et al., 1992a; Wallert and Fröhlich, 1992)
have been used. In addition, $[^{14}C]5,5'$ -dimethyloxazoli-
dine-2,4-dione, a compound that partitions between the
intracellular and extracellular spaces as a fu dine-2,4-dione, a compound that partitions between the
intracellular and extracellular spaces as a function of
intracellular and extracellular pH, was used to assess
 pH_i (Fuller et al., 1991).
Both synthetic sympathomim ne-2,4-dione, a compound that partitions between the tracellular and extracellular spaces as a function of tracellular and extracellular pH, was used to assess H_i (Fuller et al., 1991).
Both synthetic sympathomimetics a intracellular and extracellular spaces as a function
intracellular and extracellular pH, was used to asse
pH_i (Fuller et al., 1991).
Both synthetic sympathomimetics and endogeno
catecholamines (in the presence of β -a

ers) induce an alkalinization that typically amounts to

cate cholamines (in the presence of β-adrenoceptor block-

ers) induce an alkalinization that typically amounts to

0.1 pH units at 30 μ M epinephrine or 100 μ Both synthetic sympathomimetics and endogenous
catecholamines (in the presence of β -adrenoceptor block-
ers) induce an alkalinization that typically amounts to
0.1 pH units at 30 μ M epinephrine or 100 μ M phenylep catecholamines (in the presence of β -adrenoceptor block-
ers) induce an alkalinization that typically amounts to
0.1 pH units at 30 μ M epinephrine or 100 μ M phenyleph-
rine either in bicarbonate-poor or -rich bat ers) induce an alkalinization that typically amounts to 0.1 pH units at 30 μ M epinephrine or 100 μ M phenylephrine either in bicarbonate-poor or -rich bathing solutions (Astarie et al., 1991; Fuller et al., 1991; Ter 0.1 pH units at 30 μ M epinephrine or 100 μ M phenylephrine either in bicarbonate-poor or -rich bathing solution (Astarie et al., 1991; Fuller et al., 1991; Terzic et al. 1992a). The selective α_1 -adrenoceptor bloc rine either in bicarbonate-poor or -rich bathing solutions
(Astarie et al., 1991; Fuller et al., 1991; Terzic et al.
1992a). The selective α_1 -adrenoceptor blocker, prazosin
but not the α_2 -adrenoceptor blocker, yoh (Astarie et al., 1991; Fuller et al., 1991; Terzic et al. 1992a). The selective α_1 -adrenoceptor blocker, prazosir but not the α_2 -adrenoceptor blocker, yohimbine, abolished this alkalinization, indicating that the 1992a). The selective α_1 -adrenoceptor blocker, but not the α_2 -adrenoceptor blocker, yohimbished this alkalinization, indicating that the sar α_1 -adrenoceptor is responsible for the effect on zic et al., 1992a; it not the α_2 -adrenoceptor blocker, yohimbine, abol-

ed this alkalinization, indicating that the sarcolemmal Na⁺

-adrenoceptor is responsible for the effect on pH_i (Ter-

et al., 1992a; Wallert and Fröhlich, 199

ished this alkalinization, indicating that the sarcolemmal α_1 -adrenoceptor is responsible for the effect on pH_i (Ter-
zic et al., 1992a; Wallert and Fröhlich, 1992).
The origin of the alkalinization has been ascribe α_1 -autenoceptor is responsible for the effect on pri₁ (ref-
zic et al., 1992a; Wallert and Fröhlich, 1992).
The origin of the alkalinization has been ascribed to
the stimulation of Na⁺/H⁺ exchange, a major alkal 21c et al., 1992a; wanter and Fromch, 1992).
The origin of the alkalinization has been ascribed to
the stimulation of Na⁺/H⁺ exchange, a major alkalinizing
transporter. Three findings support that conclusion: (a)
selec

FT AL.
vent the _{α1}-adrenoceptor-mediated alkalinization (Iwa
ura et al., 1990; Terzic et al., 1991; Gambassi et al., 19 ET AL.
vent the α_1 -adrenoceptor-mediated alkalinization (Iwak-
ura et al., 1990; Terzic et al., 1991; Gambassi et al., 1992;
Terzic et al., 1992a), *(b)* replacement of extracellular Na⁺
with *N*-methylglucamine blo vent the α_1 -adrenoceptor-mediated alkalinization (Iwakura et al., 1990; Terzic et al., 1992; Gambassi et al., 1992; Terzic et al., 1992a), (b) replacement of extracellular Na⁺ with N-methylglucamine blocks the α_1 vent the α_1 -adrenoceptor-mediated alkalinization (Iwak-
ura et al., 1990; Terzic et al., 1991; Gambassi et al., 1992;
Terzic et al., 1992a), (b) replacement of extracellular Na⁺
with N-methylglucamine blocks the α ura et al., 1990; Terzic et al., 1991; Gambassi et al., 1992;
Terzic et al., 1992a), (*b*) replacement of extracellular Na⁺
with *N*-methylglucamine blocks the α_1 -adrenoceptor ag-
onist-induced alkalinization (Walle Terzic et al., 1992a), (b) replacement of extracellular Na⁺
with N-methylglucamine blocks the α_1 -adrenoceptor ag-
onist-induced alkalinization (Wallert and Fröhlich,
1992), and (c) α_1 -adrenoceptor agonists enhan with *I*v-methylgideamine blocks the α_1 -adrenoceptor ag-
onist-induced alkalinization (Wallert and Fröhlich,
1992), and (c) α_1 -adrenoceptor agonists enhance pH_i
recovery from acidosis under conditions in which t 1992), and (c) α_1 -adrenoceptor agonists enhance pH_i
recovery from acidosis under conditions in which this
recovery primarily depends on Na⁺/H⁺ exchange (Terzic
et al., 1992a; Pucéat et al., 1993a). Furthermore, recovery from acidosis under conditions in which
recovery primarily depends on Na^+/H^+ exchange (T
et al., 1992a; Pucéat et al., 1993a). Furthermore, i
pears that α_1 -adrenoceptor agonists do not affec
intracellular b recovery primarily depends on Na⁺/H⁺ exchange (Terzic et al., 1992a; Pucéat et al., 1993a). Furthermore, it appears that α_1 -adrenoceptor agonists do not affect the intracellular buffering capacity. A lack of α_1 et al., 1992a, I detail et al., 1999a). Furthermore, it appears that α_1 -adrenoceptor agonists do not affect the intracellular buffering capacity. A lack of α_1 -adrenoceptor-mediated effects on the apparent bufferin pears that a_1 -adrenoteptor agonsts do not arrect the
intracellular buffering capacity. A lack of α_1 -adrenocep-
tor-mediated effects on the apparent buffering capacity
was established in both the presence and absenc 1993a). tor-mediated effects on the apparent buffering capacity
was established in both the presence and absence of Na⁺/
H⁺ antiport inhibitors (Terzic et al., 1992a; Pucéat et al.,
1993a).
The results concerning pH_i review

stimulation than do cells in their natural environment.

B. Effects on Intracellular H⁺, Na⁺, and Ca²⁺ and on

Ionic Transport Mechanisms
 α_1 -Adrenoceptor agonists produce an intracellular al-

kalinization. Thi was established in both the presence and absence of N
 H^+ antiport inhibitors (Terzic et al., 1992a; Pucéat et
1993a).
The results concerning pH_i reviewed above were
tained under physiological extracellular pH. α_1 H⁺ antiport inhibitors (Terzic et al., 1992a; Pucéat et al.
1993a).
The results concerning pH_i reviewed above were of
tained under physiological extracellular pH. α_1 -Adrenceptor agonists also produce an alkaliniza 1993a).
The results concerning pH_i reviewed above were obtained under physiological extracellular pH. α_1 -Adrenoceptor agonists also produce an alkalinization and accelerate the recovery of pH_i following an imposed The results concerning pH_i reviewed above were obtained under physiological extracellular pH. α_1 -Adrenoceptor agonists also produce an alkalinization and accelerate the recovery of pH_i following an imposed acid ch tained under physiological extracellular pH. α_1 -Adreno-
ceptor agonists also produce an alkalinization and accel-
erate the recovery of pH_i following an imposed acid
challenge via the stimulation of Na⁺/H⁺ excha erate the recovery of pH_i following an imposed acid challenge via the stimulation of Na^+/H^+ exchange under extracellular acidosis (Pucéat et al., 1993a). These effects could potentially be significant under condit erate the recovery of pH_i following an imposed acid
challenge via the stimulation of Na⁺/H⁺ exchange under
extracellular acidosis (Pucéat et al., 1993a). These effects
could potentially be significant under conditio challenge via the stimulation of Na⁺/H⁺ exchange unextracellular acidosis (Pucéat et al., 1993a). These effecould potentially be significant under conditions associed with extracellular acidosis, such as ischemia hypo extracellular acidosis (Pucéat et al., 1993a). These effects
could potentially be significant under conditions associ-
ated with extracellular acidosis, such as ischemia or
hypoxia. By stimulating the Na⁺/H⁺ antiport, could potentially be significant under conditions associated with extracellular acidosis, such as ischemia or hypoxia. By stimulating the Na⁺/H⁺ antiport, α_1 -adrenceptor agonist could modulate cardiac mechanisms t steps responsible for cardiac contraction and cell growth.
The model growth are sensitive to changes in pH_i. This includes various
steps responsible for cardiac contraction and cell growth.
The molecular pathway by whic poxia. By stimulating the Na⁺/H⁺ antiport, α_1 -adre-
ceptor agonist could modulate cardiac mechanisms
at are sensitive to changes in pH_i. This includes various
ps responsible for cardiac contraction and cell grow

1990; Wallert and Fröhlich, 1992), and Purkinje fibers As in many noncardiac tissues (Frelin et al., 1988), it has (Breen and Pressler, 1988; Pressler et al., 1989; see, been suggested that PKC is responsible for the acti that are sensitive to changes in pH_i. This includes various
steps responsible for cardiac contraction and cell growth.
The molecular pathway by which α_1 -adrenoceptor ag-
onists stimulate the Na⁺/H⁺ antiport is s steps responsible for cardiac contraction and cell growth.
The molecular pathway by which α_1 -adrenoceptor agonists stimulate the Na⁺/H⁺ antiport is still not known. steps responsible for cardiac contraction and cell growth.
The molecular pathway by which α_1 -adrenoceptor agonists stimulate the Na⁺/H⁺ antiport is still not known.
As in many noncardiac tissues (Frelin et al., 19 The molecular pathway by which α_1 -adrenoceptor agonists stimulate the Na⁺/H⁺ antiport is still not known.
As in many noncardiac tissues (Frelin et al., 1988), it has been suggested that PKC is responsible for the onists stimulate the Na⁺/H⁺ antiport is still not known.
As in many noncardiac tissues (Frelin et al., 1988), it has
been suggested that PKC is responsible for the activation
of the exchanger because phorbol esters mi been suggested that PKC is responsible for the activation been suggested that F_{NC} is responsible for the activation
of the exchanger because phorbol esters mimic, whereas
PKC inhibitors (e.g., H7, staurosporine) block, the α_1 -
adrenoceptor agonist-mediated alkalinizati of the exchanger because phorbol esters mimic, whereas PKC inhibitors (e.g., H7, staurosporine) block, the α_1 -adrenoceptor agonist-mediated alkalinization in a suspension of ventricular cells or in Purkinje fibers (Sh PKC inhibitors (e.g., H7, staurosporine) block, the
adrenoceptor agonist-mediated alkalinization in a s
pension of ventricular cells or in Purkinje fibers (Shar
and Sheu, 1987; Breen and Pressler, 1988; Iwakura et
1990; Wa pension of ventricular cells or in Purkinje fibers (Sharma
and Sheu, 1987; Breen and Pressler, 1988; Iwakura et al.,
1990; Wallert and Fröhlich, 1992). Likewise, in cardiom-
yocytes preincubated with the phorbol ester, pho and Sheu, 1987; Breen and Pressler, 1988; Iwakura et al., 1990; Wallert and Fröhlich, 1992). Likewise, in cardiom-
yocytes preincubated with the phorbol ester, phorbol-12-
myristate-13-acetate, or with staurosporine to do nists did not produce an alkalinization (Gambassi et al., 1992). A role for Ca^{2+} -calmodulin-dependent kinase has yocytes preincubated with the phorotol ester, phoroto-12-
myristate-13-acetate, or with staurosporine to down-reg-
ulate or inhibit PKC, respectively, α_1 -adrenoceptor ago-
nists did not produce an alkalinization (Gamb myristate-13-acetate, or with statubally and the waven-reg-
ulate or inhibit PKC, respectively, α_1 -adrenoceptor ago-
nists did not produce an alkalinization (Gambassi et al.,
1992). A role for Ca²⁺-calmodulin-depend nists did not produce an alkalinization (Gambassi et al., 1992). A role for Ca²⁺-calmodulin-dependent kinase has also been proposed because W7, an inhibitor of Ca²⁺-calmodulin-dependent kinase, also inhibits the α_1 1992). A fole for Ca --Calmodulff-dependent kinase has
also been proposed because W7, an inhibitor of Ca²⁺-
calmodulin-dependent kinase, also inhibits the α_1 -me-
diated alkalinization (Iwakura et al., 1990; Wallert calmodulin-dependent kinase, also inhibits the α_1 -me-
diated alkalinization (Iwakura et al., 1990; Wallert and
Fröhlich, 1992). However, Pucéat et al., (1993a) could
not confirm these results in rat single ventricular diated alkalinization (Iwakura et al., 1990; Wallert and
Fröhlich, 1992). However, Pucéat et al., (1993a) could
not confirm these results in rat single ventricular myo-
cytes. Indeed, in this latter study, the stimulation Fröhlich, 1992). However, Pucéat et al., (1993a) could
not confirm these results in rat single ventricular myo-
cytes. Indeed, in this latter study, the stimulation of
Na⁺/H⁺ exchange by α_1 -adrenoceptor agonists w not confirm these results in rat single ventricular myocytes. Indeed, in this latter study, the stimulation of Na^+/H^+ exchange by α_1 -adrenoceptor agonists was not affected by the presence of an intracellular cytes. Indeed, in this latter study, the stimulation of Na^+/H^+ exchange by α_1 -adrenoceptor agonists was not affected by the presence of an intracellular Ca^{2+} chelator, suggesting that changes in intra Na^+/H^+ exchange by α_1 -adrenoceptor agonists was not affected by the presence of an intracellular Ca^{2+} chelator, suggesting that changes in intracellular Ca^{2+} are not required for these effects. Neither stauros affected by the presence of an intracellular Ca^{2+} chelato
suggesting that changes in intracellular Ca^{2+} are n
required for these effects. Neither staurosporine no
GF109203X, two inhibitors of PKC, was able to prever suggesting that changes in intracellular Ca^{2+} are n
required for these effects. Neither staurosporine n
GF109203X, two inhibitors of PKC, was able to preve
the phenylephrine-induced alkalinization. Furthermon
the α_1 required for these effects. Neither staurosporine nor GF109203X, two inhibitors of PKC, was able to prevent the phenylephrine-induced alkalinization. Furthermore, the α_1 -adrenoceptor-triggered acceleration of pH_i re

CARDIAC α_1 -ADRE
rosporine. Although the signal transduction pathway to
linking the α_1 -adrenoceptor to the activation of the Na⁺/ e CARDIAC α_1 -AD
rosporine. Although the signal transduction pathway
linking the α_1 -adrenoceptor to the activation of the Na⁺/
H⁺ exchange still remains a question of controversy, **CARDIAC** α_1 -
 WE rosporine. Although the signal transduction pathware linking the α_1 -adrenoceptor to the activation of the Na⁺
 H^+ exchange still remains a question of controversy,

evidence was obtained s rosporine. Although the signal transduction pathwa
linking the α_1 -adrenoceptor to the activation of the Na⁺
H⁺ exchange still remains a question of controversy
evidence was obtained suggesting that α_1 -adrenoce rosporine. Although the signal transduction pathwa
linking the α_1 -adrenoceptor to the activation of the Na⁴
H⁺ exchange still remains a question of controvers
evidence was obtained suggesting that α_1 -adrenocep in the Na⁺ exchange still remains a question of controversy, sulevidence was obtained suggesting that α_1 -adrenoceptor 1993 agonists produce an increase both in the apparent affinity of the Na⁺/H⁺ antiport for pr evidence was obtained suggesting that α_1 -adrenoceptor 1
agonists produce an increase both in the apparent affin-
ity of the Na⁺/H⁺ antiport for protons and in its maximal o
ionic exchange activity (Pucéat et al., 1992). In a of the Na⁺/H⁺ antiport for protons and in its maximal

ince exchange activity (Pucéat et al., 1993a; also see

ggadic-Gossmann et al., 1992b; Wallert and Fröhlich,

92).

In addition to the Na⁺/H⁺ antiport, c

Sessional exchange activity (1 decat et al., 1999a, also see
Lagadic-Gossmann et al., 1992b; Wallert and Fröhlich
1992).
In addition to the Na⁺/H⁺ antiport, cardiac cells pos
sess a bicarbonate-dependent alkalinizing t Lagadic-Gossmann et al., 1992b; Wallert and Fröhli
1992).
In addition to the Na⁺/H⁺ antiport, cardiac cells p
sess a bicarbonate-dependent alkalinizing transpor
(Liu et al., 1990; Dart and Vaughan-Jones, 1992; Lagad
G 1992).
In addition to the Na⁺/H⁺ antiport, cardiac cells possess a bicarbonate-dependent alkalinizing transporter
(Liu et al., 1990; Dart and Vaughan-Jones, 1992; Lagadic-
Gossmann et al., 1992a). Selective α_1 -adr in addition to the Na /H antiport, cardiac tens pos-
sess a bicarbonate-dependent alkalinizing transporter s
(Liu et al., 1990; Dart and Vaughan-Jones, 1992; Lagadic-
Gossmann et al., 1992a). Selective α_1 -adrenoceptor (Liu et al., 1990; Dart and Vaughan-Jones, 1992; Lagadic-
Gossmann et al., 1992a). Selective α_1 -adrenoceptor ago-
mists, such as phenylephrine, do enhance the recovery of ex-
pH_i from acidosis under conditions in wh Gossmann et al., 1992a). Selective α_1 -adrenoceptor agonists, such as phenylephrine, do enhance the recovery of pH_i from acidosis under conditions in which the Na⁺/H⁺ antiport is blocked (Terzic et al., 1992b). T nists, such as phenylephrine, do enhance the recovery of pH_i from acidosis under conditions in which the Na⁺/H⁺ antiport is blocked (Terzic et al., 1992b). This effect is absent in bicarbonate-free solutions and, th pH_i from acidosis under conditions in which the Na⁺, antiport is blocked (Terzic et al., 1992b). This effect
absent in bicarbonate-free solutions and, thus, suggethat α_1 -adrenoceptor could activate not only Na⁺, antiport is blocked (Terzic et al., 1992b). This effect is mob
absent in bicarbonate-free solutions and, thus, suggests W
that α_1 -adrenoceptor could activate not only Na⁺/H⁺ cont
exchange but also a bicarbonate-de absent in bicarbonate-free solutions and, thus, suggests
that α_1 -adrenoceptor could activate not only Na^+/H^+
exchange but also a bicarbonate-dependent, amiloride-
insensitive, alkalinizing transport mechanism at that α_1 -adrenoceptor could activate not only Na⁺/H⁺ constrainance but also a bicarbonate-dependent, amiloride-
insensitive, alkalinizing transport mechanism at least in α_1 -
rat ventricular cardiomyocytes (Terz exchange but also a bicarbonate-dependent, amiloride-
insensitive, alkalinizing transport mechanism at least in α_1 - α
rat ventricular cardiomyocytes (Terzic et al., 1992b). croi
However, in guinea pig cardiac cells, insensitive, alkalinizing transport mechanism at least in α_1 -
rat ventricular cardiomyocytes (Terzic et al., 1992b). cro
However, in guinea pig cardiac cells, epinephrine, which gro
stimulates both α - and β -adre rat ventricular cardiomyocytes (Terzic et al., 1992b).
However, in guinea pig cardiac cells, epinephrine, which
stimulates both α - and β -adrenoceptors, inhibits pH_i
recovery from acidosis in the presence of amilor stimulates both α - and β -adrenoceptors, inhibits pH_i
recovery from acidosis in the presence of amiloride and
bicarbonate (Lagadic-Gossmann et al., 1992b). The rea-
son underlying the difference between these two s is unknown but could be due to opposing effects of α -
is unknown but could be due to opposing effects of α -
is unknown but could be due to opposing effects of α -
in and β -adrenergic stimulation on cardiac pH_i carbonate (Lagadic-Gossmann et al., 1992b). The
n underlying the difference between these two stu
unknown but could be due to opposing effects of
 β -adrenergic stimulation on cardiac pH_i regulati
In addition to produc

is unknown but could be due to opposing effects of
and β -adrenergic stimulation on cardiac pH_i regulation.
In addition to producing an intracellular alkalini
tion, the activation of the Na⁺/H⁺ antiport by α_1 is unknown but could be due to opposing effects of
and β -adrenergic stimulation on cardiac pH_i regulatio
In addition to producing an intracellular alkalini
tion, the activation of the Na⁺/H⁺ antiport by α_1 -ad and β -adrenergic stimulation on cardiac pH_i regulation. cha
In addition to producing an intracellular alkaliniza-
tion, the activation of the Na⁺/H⁺ antiport by α_1 -adre-
noceptor agonists could be expected to In addition to producing an intracellular alkaliniza-
tion, the activation of the Na⁺/H⁺ antiport by α_1 -adre-
noceptor agonists could be expected to increase intracel- (Ga
lular Na⁺. However, α_1 -adrenoceptor tion, the activation of the Na⁺/H⁺ antiport by α_1 -adre-
noceptor agonists could be expected to increase intracel-
lular Na⁺. However, α_1 -adrenoceptor stimulation also
increases Na⁺/K⁺ pump activity leadi noceptor agonists could be expected to increase intracel-

lular Na⁺. However, α_1 -adrenoceptor stimulation also

increases Na⁺/K⁺ pump activity leading to a decrease in

intracellular Na⁺ (Zaza et al., 1990; W increases Na⁺/K⁺ pump activity leading to a decrease in intracellular Na⁺ (Zaza et al., 1990; Wilde and Kleber, 1991) and an increase in K⁺ uptake (Ellingsen et al., 1987). Indeed, Terzic et al. (1991) observed an intracellular Na⁺ (Zaza et al., 1990; Wilde and Kleber, Fa
1991) and an increase in K⁺ uptake (Ellingsen et al., (19
1987). Indeed, Terzic et al. (1991) observed an increase to
in intracellular Na⁺ only when the α 1991) and an increase in K^+ uptake (Ellingsen et al., 1987). Indeed, Terzic et al. (1991) observed an increase in intracellular Na^+ only when the α_1 -adrenoceptors agonist was applied in the presence of ouabain, w 1987). Indeed, Terzic et al. (1991) observed an increase to 2 in intracellular Na⁺ only when the α_1 -adrenoceptors phenosponist was applied in the presence of ouabain, which concomitabilities Na⁺/K⁺ pumping. It c in intracellular Na⁺ only when the α_1 -adrenoceptors plagonist was applied in the presence of ouabain, which continuities Na⁺/K⁺ pumping. It could be hypothesized that the concomitant stimulation of Na⁺/K⁺ pu inhibits Na^+/K^+ pumping. It could be hypothesized that the concomitant stimulation of Na^+/K^+ pumping, and in O
turn Na^+ efflux, counterbalanced the increased influx of an
 Na^+ produced by Na^+/H^+ antiport activati minots iva /ix pumping. it collects be hypothesized that
the concomitant stimulation of Na^+/K^+ pumping, and in
turn Na^+ efflux, counterbalanced the increased influx of
 Na^+ produced by Na^+/H^+ antiport activation. U turn Na⁺ efflux, counterbalanced the increased influx Na^+ produced by Na^+/H^+ antiport activation. Usin radiolabeled ${}^{22}Na$, Jahnel et al. (1991) reported an increase in unidirectional Na⁺ influx in resting atria Na⁺ produced by Na⁺/H⁺ antiport activation. Using iold radiolabeled ²²Na, Jahnel et al. (1991) reported an increase in unidirectional Na⁺ influx in resting atria stimulated with phenylephrine. This effect was at radiolabeled ²²Na, Jahnel et al. (1991) reported an in-
crease in unidirectional Na⁺ influx in resting atria stim-
ulated with phenylephrine. This effect was attributed to
a depolarization-triggered activation of the crease in unidirectional Na⁺ influx in resting atria stim-
ulated with phenylephrine. This effect was attributed to
a depolarization-triggered activation of the tetrodotoxin-
sensitive Na⁺ window current because the a ulated with phenylephrine. This effect was attributed to
a depolarization-triggered activation of the tetrodotoxin-
sensitive Na⁺ window current because the agonist in-
duces a depolarization of atrial cells. It can be a depolarization-triggered activation of the tetrodotoxinsensitive Na⁺ window current because the agonist induces a depolarization of atrial cells. It can be argued uthat α_1 -adrenergic stimulation enhances both Na⁺ sensitive Na⁺ wind
duces a depolarizat
that α_1 -adrenergic s
and efflux mechani
the other direction.
The effects of α_1 ces a depolarization of atrial cells. It can be arget α_1 -adrenergic stimulation enhances both Na⁺ in d efflux mechanisms with a slight net effect in on e other direction.
The effects of α_1 -adrenoceptor agonists that α_1 -adrenergic stimulation enhances both Na⁺ influx
and efflux mechanisms with a slight net effect in one or
the other direction.
The effects of α_1 -adrenoceptor agonists on intracellu-
lar Ca²⁺ have not be

and efflux mechanisms with a slight net effect in one or
the other direction.
The effects of α_1 -adrenoceptor agonists on intracellu-
lar Ca²⁺ have not been elucidated unequivocally as yet.
Regarding diastolic Ca²⁺ the other direction. of precise of a contracellu-

The effects of α_1 -adrenoceptor agonists on intracellu-

lar Ca²⁺ have not been elucidated unequivocally as yet. and

Regarding diastolic Ca²⁺, studies using Ca²⁺ The effects of α_1 -adrenoceptor agonists on intracellu-
lar Ca²⁺ have not been elucidated unequivocally as yet.
Regarding diastolic Ca²⁺, studies using Ca²⁺-sensitive a
fluorescent indicators (Indo-1, Fura-2) and

ENOCEPTORS
to coverslips, showed that α_1 -adrenoceptor agonists moderately increased diastolic intracellular Ca²⁺. These re ENOCEPTORS 155
to coverslips, showed that α_1 -adrenoceptor agonists moderately increased diastolic intracellular Ca^{2+} . These re-
sults were obtained in quiescent rat cells (Iwakura et al., ENOCEPTORS 155
to coverslips, showed that α_1 -adrenoceptor agonists mod-
erately increased diastolic intracellular Ca²⁺. These re-
sults were obtained in quiescent rat cells (Iwakura et al.,
1990; Eckel et al., 1991) erately increased diastolic intracellular Ca²⁺. These results were obtained in quiescent rat cells (Jwakura et al., 1990); Eckel et al., 1991) or electrically stimulated rat atrial cells (Jahnel et al., 1992b) and hamst erately increased diastolic intracellular Ca^{2+} . These results were obtained in quiescent rat cells (Iwakura et al., 1990; Eckel et al., 1991) or electrically stimulated rat atrial cells (Jahnel et al., 1992b) and hamst the modulation of diastolic Ca^{2+} in hamster cardiac myo-1990; Eckel et al., 1991) or electrically stimulated ra
atrial cells (Jahnel et al., 1992b) and hamster cardiomy
ocytes (Sen et al., 1990). A pertussis toxin-sensitive G
protein has been implicated to link α_1 -adrenoce atrial cells (Jahnel et al., 1992b) and hamster cardiomy-
ocytes (Sen et al., 1990). A pertussis toxin-sensitive G-
protein has been implicated to link α_1 -adrenoceptors to
the modulation of diastolic Ca²⁺ in hamster ocytes (Sen et al., 1990). A pertussis toxin-sensitive G-
protein has been implicated to link α_1 -adrenoceptors to
the modulation of diastolic Ca^{2+} in hamster cardiac myo-
cytes (Sen et al., 1990). Jahnel et al. (19 protein has been implicated to link α_1 -adrenoceptors to
the modulation of diastolic Ca²⁺ in hamster cardiac myo-
cytes (Sen et al., 1990). Jahnel et al. (1991) observed a
significant increase in ⁴⁵Ca²⁺ uptake in the modulation of diastolic Ca^{2+} in hamster cardiac myocytes (Sen et al., 1990). Jahnel et al. (1991) observed a significant increase in ⁴⁵Ca²⁺ uptake in beating atria stimulated with phenylephrine. Whereas Iwakura significant increase in $^{45}Ca^{2+}$ uptake in beating atria
stimulated with phenylephrine. Whereas Iwakura et al.
(1990) and Jahnel et al. (1991, 1992b) postulated that
the increase in intracellular Ca^{2+} was due to $Na^$ significant increase in ⁴⁹Ca²⁺ uptake in beating atria
stimulated with phenylephrine. Whereas Iwakura et al.
(1990) and Jahnel et al. (1991, 1992b) postulated that
the increase in intracellular Ca²⁺ was due to Na⁺ stimulated with phenylephrine. Whereas Iwakura et al. (1990) and Jahnel et al. (1991, 1992b) postulated that the increase in intracellular Ca²⁺ was due to Na⁺/Ca²⁺ exchange following an increase in intracellular Na Eckel et al. (1991) proposed that α_1 -adrenergic agonists
mobilized an intracellular Ca²⁺ pool.
With regard to systolic Ca²⁺ associated with twitch
contractions, Endoh and Blinks (1988) showed a small e increase in intracellular Ca²⁺ was due to Na⁺/Ca²⁺
change following an increase in intracellular Na⁺,
kel et al. (1991) proposed that α_1 -adrenergic agonists
obilized an intracellular Ca²⁺ pool.
With regard exchange following an increase in intracellular Na⁺,
Eckel et al. (1991) proposed that α_1 -adrenergic agonists
mobilized an intracellular Ca²⁺ pool.
With regard to systolic Ca²⁺ associated with twitch
contraction

Eckel et al. (1991) proposed that α_1 -adrenergic agonists
mobilized an intracellular Ca²⁺ pool.
With regard to systolic Ca²⁺ associated with twitch
contractions, Endoh and Blinks (1988) showed a small
increase in C mobilized an intracellular Ca²⁺ pool.
With regard to systolic Ca²⁺ associated with twitch
contractions, Endoh and Blinks (1988) showed a small
increase in Ca²⁺ transients following the application of
 α_1 -adrenoce With regard to systolic Ca²⁺ associated with twitt contractions, Endoh and Blinks (1988) showed a smaincrease in Ca²⁺ transients following the application α_1 -adrenoceptor agonists to rabbit papillary muscles m cro increase in Ca²⁺ transients following the application of α_1 -adrenoceptor agonists to rabbit papillary muscles micronijected with aequorin. O'Rourke (1990) and Capogrossi et al. (1991) demonstrated that the ability o α_1 -autencceptor agomsts to rabbit papmary muscles incronnicated with aequorin. O'Rourke (1990) and Capogrossi et al. (1991) demonstrated that the ability of α_1 -adrenoceptor agonists to affect systolic Ca²⁺ depen grossi et al. (1991) demonstrated that the ability of α_1 -
adrenoceptor agonists to affect systolic Ca²⁺ depends on
the external Ca²⁺ concentration (O'Rourke et al., 1992).
At low external Ca²⁺ concentrations (0. adrenoceptor agonists to affect systolic Ca²⁺ depends of the external Ca²⁺ concentration (O'Rourke et al., 1992) At low external Ca²⁺ concentrations (0.5 to 1 mM CaCl₂) α_1 -adrenoceptor agonists appear to moder the external Ca²⁺ concentration (O'Rourke et al., 1992).
At low external Ca²⁺ concentrations (0.5 to 1 mM CaCl₂),
 α_1 -adrenoceptor agonists appear to moderately increase
intracellular Ca²⁺ transients (also see At low external Ca²⁺ concentrations (0.5 to 1 mM CaC α_1 -adrenoceptor agonists appear to moderately incres intracellular Ca²⁺ transients (also see Fedida and B chard, 1992). At 1.5 mM external CaCl₂, 50% of myocy α_1 -adrenoceptor agonists appear to moderately increase
intracellular Ca²⁺ transients (also see Fedida and Bou-
chard, 1992). At 1.5 mM external CaCl₂, 50% of myocytes
show an increase in Ca²⁺ transients followin chard, 1992). At 1.5 mM external CaCl₂, 50% of myocytes
show an increase in Ca²⁺ transients following α_1 -adre-
noceptor stimulation, whereas the other half do not
(Gambassi et al., 1992). At 2 mM external CaCl₂, chard, 1992). At 1.5 mM external CaCl₂, 50% of myocytes
show an increase in Ca²⁺ transients following α_1 -adre-
noceptor stimulation, whereas the other half do not
(Gambassi et al., 1992). At 2 mM external CaCl₂, show an increase in Ca²⁺ transients following α_1 -adre-
noceptor stimulation, whereas the other half do not
(Gambassi et al., 1992). At 2 mM external CaCl₂, α_1 -
adrenoceptor agonists no longer or inconsistently noceptor stimulation, whereas the other half do not (Gambassi et al., 1992). At 2 mM external CaCl₂, α_1 -
adrenoceptor agonists no longer or inconsistently in-
crease intracellular Ca²⁺ transients (O'Rourke, 1990;
 (Gambassi et al., 1992). At 2 mM external CaCl₂, α_1 -
adrenoceptor agonists no longer or inconsistently in-
crease intracellular Ca²⁺ transients (O'Rourke, 1990;
Failli et al., 1992; cf. Jahnel et al., 1992b). Fail adrenoceptor agonists no longer or inconsistently in-
crease intracellular Ca^{2+} transients (O'Rourke, 1990;
Failli et al., 1992; cf. Jahnel et al., 1992b). Failli et al.
(1992) reported that, of 46 single cardiac cells crease intracellular Ca²⁺ transients (O'Rourke, 1990;
Failli et al., 1992; cf. Jahnel et al., 1992b). Failli et al.
(1992) reported that, of 46 single cardiac cells exposed
to 2 mM CaCl₂, only 12 myocytes (26%) respon Failli et al., 1992; cf. Jahnel et al., 1992b). Failli et al.
(1992) reported that, of 46 single cardiac cells exposed
to 2 mM CaCl₂, only 12 myocytes (26%) responded to
phenylephrine (10 to 100 μ M). At higher extern (1992) reported that, of 46 single cardiac cells exposed
to 2 mM CaCl₂, only 12 myocytes (26%) responded to
phenylephrine (10 to 100 μ M). At higher external Ca²⁺
concentrations (5 mM), α_1 -adrenoceptor agonists to 2 mM CaCl₂, only 12 myocytes (26%) responded
phenylephrine (10 to 100 μ M). At higher external Ca
concentrations (5 mM), α_1 -adrenoceptor agonists a
tually decreased Ca²⁺ transients (Capogrossi et al., 199
O'R phenylephrine (10 to 100 μ M). At higher external Ca² concentrations (5 mM), α_1 -adrenoceptor agonists at tually decreased Ca²⁺ transients (Capogrossi et al., 199
O'Rourke et al., 1992). Using spectromicrofluorom concentrations (5 mM), α_1 -adrenoceptor agonists actually decreased Ca²⁺ transients (Capogrossi et al., 1991; O'Rourke et al., 1992). Using spectromicrofluorometry and adjusting the external Ca²⁺ concentrations to tually decreased Ca²⁺ transients (Capogrossi et al., 1991;
O'Rourke et al., 1992). Using spectromicrofluorometry
and adjusting the external Ca²⁺ concentrations to phys-
iological levels (1.8 mM) for the rat, Terzic et O'Rourke et al., 1992). Using spectromicrofluce and adjusting the external Ca²⁺ concentrations iological levels (1.8 mM) for the rat, Terzic et al. observed no change in Ca²⁺ transients in elemotiven single cells supe *C. Metabolical levels* (1.8 mm
 C. Metabolic Effects
 C. Metabolic Effects
 C. Metabolic Effects

Epinephrine, in the served no change in Ca^{2+} transients in electrically
iven single cells superfused with phenylephrine.
Metabolic Effects
Epinephrine, in the presence of propranolol, can reg-
ate glycogen and glucose metabolism in cardia

driven single cells superfused with phenylephrine.

C. Metabolic Effects

Epinephrine, in the presence of propranolol, can regulate glycogen and glucose metabolism in cardiac muscle

(for review, see Osnes et al., 1985). S C. Metabolic Effects
Epinephrine, in the presence of propranolol, can regulate glycogen and glucose metabolism in cardiac muscle
(for review, see Osnes et al., 1985). Stimulation of cardiac
 α_1 -adrenoceptors increases C. Metabolic Effects

Epinephrine, in the presence of propranolol, can reg-

ulate glycogen and glucose metabolism in cardiac muscle

(for review, see Osnes et al., 1985). Stimulation of cardiac
 α_1 -adrenoceptors incr Epinephrine, in the presence of propranolol, can regulate glycogen and glucose metabolism in cardiac muscle (for review, see Osnes et al., 1985). Stimulation of cardiac α_1 -adrenoceptors increases glucose uptake, the a ulate glycogen and glucose metabolism in cardiac muscle
(for review, see Osnes et al., 1985). Stimulation of cardiac α_1 -adrenoceptors increases glucose uptake, the activity
of phosphofructokinase (a rate-limiting glyc (for review, see Osnes et al., 1985). Stimulation of cardiac α_1 -adrenoceptors increases glucose uptake, the activity of phosphofructokinase (a rate-limiting glycolysis en-zyme), and lactate formation (Keely et al., 19 of phosphofructokinase (a rate-limiting glycolysis en-
zyme), and lactate formation (Keely et al., 1977; Clark
and Patten, 1984). Although stimulating glycolysis, α_1 -
adrenoceptor agonists inhibit the enzymatic activi and Patten, 1984). Although stimulating glycolysis, α_1 adrenoceptor agonists inhibit the enzymatic activity of

aspet

156 TERZIC ET AL. 156

phorylase *a* activity (Clark and Patten, 1984; Osnes et

al., 1985). α₁-Adrenoceptor agonists also modulate the 1 156 TERZIC ET
phorylase *a* activity (Clark and Patten, 1984; Osnes et na
al., 1985). α_1 -Adrenoceptor agonists also modulate the N,
pentose pathway which supplies precursors for adenine ne 156 TERZIC E
phorylase a activity (Clark and Patten, 1984; Osnes et ral., 1985). α_1 -Adrenoceptor agonists also modulate the rentose pathway which supplies precursors for adenine renucleotide synthesis. When injected f phorylase a activity (Clark and Patten, 1984; Osnes et al., 1985). α_1 -Adrenoceptor agonists also modulate the pentose pathway which supplies precursors for adenine nucleotide synthesis. When injected for 3 days into r phorylase *a* activity (Clark and Patten, 1984; Osnes et al., 1985). α_1 -Adrenoceptor agonists also modulate the pentose pathway which supplies precursors for adenine nucleotide synthesis. When injected for 3 days into al., 1985). α_1 -Adrenoceptor agonists also modulate the N, pentose pathway which supplies precursors for adenine nel nucleotide synthesis. When injected for 3 days into rats, rin norepinephrine and norfenefrine (in the pentose pathway which supplies precursors for adeninucleotide synthesis. When injected for 3 days into renorepinephrine and norfenefrine (in the presence of adrenoceptors antagonists) activate up to 8-fold (in dose-depende nucleotide synthesis. When injected for 3 days into rats, riference photon and norfenefrine (in the presence of β -
adrenoceptors antagonists) activate up to 8-fold (in a adose-dependent and prazosin-sensitive manner) g norepinephrine and norfenefrine (in the presence of β -
adrenoceptors antagonists) activate up to 8-fold (in a
dose-dependent and prazosin-sensitive manner) glucose-
6-phosphate dehydrogenase, the regulating enzyme of
t dose-dependent and prazosin-sensitive manner) glucose-6-phosphate dehydrogenase, the regulating enzyme of the pentose pathway (Zimmer et al., 1992). The increase in glucose-6-phosphate dehydrogenase is due to an en-hanceme dose-dependent and prazosin-sensitive manner) glucose-6-phosphate dehydrogenase, the regulating enzyme of the pentose pathway (Zimmer et al., 1992). The increase in glucose-6-phosphate dehydrogenase is due to an enhancemen 6-phosphate dehydrogenase, the regulating enzyme of public pentose pathway (Zimmer et al., 1992). The increase in glucose-6-phosphate dehydrogenase is due to an en-
in glucose-6-phosphate dehydrogenase is due to an en-
(1 the pentose pathway (Zimmer et al., 1992). The increase
in glucose-6-phosphate dehydrogenase is due to an en-
hancement of the enzyme's mRNA levels. Zimmer et al.
(1992) suggested that the stimulation of the pentose
pathw in glucose-6-phosphate dehydrogenase is due to an enhancement of the enzyme's mRNA levels. Zimmer et al. this (1992) suggested that the stimulation of the pentose megathway by catecholamines (β -adrenoceptor agonists ph hancement of the enzyme's mRNA levels. Zimmer et al. (1992) suggested that the stimulation of the pentose pathway by catecholamines (β -adrenoceptor agonists lalso stimulate glucose-6-phosphate dehydrogenase) could prov (1992) suggested that the stimulation of the pentose m
pathway by catecholamines (β -adrenoceptor agonists plase stimulate glucose-6-phosphate dehydrogenase) could convolve an adaptive mechanism to balance the energetic neurotransmitters. so stimulate glucose-6-phosphate dehydrogenase) covide an adaptive mechanism to balance the energ
penditure due to the positive inotropic effect of the
urotransmitters.
Mitochondrial functions, including oxygen consum
on, provide an adaptive mechanism to balance the energetic
expenditure due to the positive inotropic effect of these
neurotransmitters.
Mitochondrial functions, including oxygen consump-
tion, are affected by α_1 -adrenocep

expenditure due to the positive inotropic effect of these preund result of the rate of case is all the rate of Ca²⁺ uptake et al., 1985). It was reported that the rate of Ca²⁺ uptake the mitochondria, isolated from he meurotransmitters. solid Mitochondrial functions, including oxygen consump-
tion, are affected by α_1 -adrenoceptor stimulation (Osnes calc
et al., 1985). It was reported that the rate of Ca²⁺ uptake "ph
by mitochondr Mitochondrial functions, including oxygen consump-
tion, are affected by α_1 -adrenoceptor stimulation (Osnes cal
et al., 1985). It was reported that the rate of Ca^{2+} uptake "pl
by mitochondria, isolated from hearts tion, are affected by α_1 -adrenoceptor stimulation (Osnes et al., 1985). It was reported that the rate of Ca^{2+} uptake by mitochondria, isolated from hearts perfused with an α -adrenergic agonist, was significantly 1983). α -adrenergic agonist, was significantly increased when
compared with control mitochondria (Crompton et al.,
1983).
In ATP-depleted rat cardiomyocytes, phenylephrine

 α -adrenergic agonist, was significantly increased whocompared with control mitochondria (Crompton et a 1983).

In ATP-depleted rat cardiomyocytes, phenylephric enhances the deamination of AMP into inosine mono-

phosph compared with control mitochondria (Crompton et al., 1983).

In ATP-depleted rat cardiomyocytes, phenylephrine it

enhances the deamination of AMP into inosine mono-

phosphate (Hohl et al., 1989). This reaction is cataly 1983).

In ATP-depleted rat

enhances the deaminati

phosphate (Hohl et al., 1

by adenosine deaminase
 α_1 -Adrenergic agonist In ATP-depleted rat cardiomyocytes, phenylephrine
hances the deamination of AMP into inosine mono-
osphate (Hohl et al., 1989). This reaction is catalyzed
adenosine deaminase.
 α_1 -Adrenergic agonists were also reported

enhances the deamination of AMP into inosine mono-
phosphate (Hohl et al., 1989). This reaction is catalyzed
by adenosine deaminase.
 α_1 -Adrenergic agonists were also reported to stimulate
protein synthesis in both iso phosphate (Hohl et al., 1989). This reaction is catalyzed
by adenosine deaminase.
 α_1 -Adrenergic agonists were also reported to stimulate
protein synthesis in both isolated myocytes and perfused
hearts (Fuller et al., by adenosine deaminase.
 α_1 -Adrenergic agonists were also reported to stim

protein synthesis in both isolated myocytes and peri

hearts (Fuller et al., 1990). This effect appears to de

on intracellular alkalinizatio α_1 -Adrenergic agonists were also reported to stimular protein synthesis in both isolated myocytes and perfuse hearts (Fuller et al., 1990). This effect appears to depen on intracellular alkalinization induced by α_1 protein synthesis in both isolated myocytes and perfused
hearts (Fuller et al., 1990). This effect appears to depend
on intracellular alkalinization induced by α_1 -adrenocep-
tor agonists and is associated with an incr hearts (Fuller et al., 1990). This effect appears to depe
on intracellular alkalinization induced by α_1 -adrenoc
tor agonists and is associated with an increase in int
cellular phosphocreatine concentration (Fuller et
 on intracellular alkalinization induced by α_1 -adrenoceptor agonists and is associated with an increase in intracellular phosphocreatine concentration (Fuller et al., properties). It was suggested that the effects of t tor agonists and is associated with an increase in intractional cellular phosphocreatine concentration (Fuller et al., produced 1991). It was suggested that the effects of the α_1 -adre-
noceptor agonist in adult cardia cellular phosphocreatine concentration (Fuller et al., 1991). It was suggested that the effects of the α_1 -adre-
noceptor agonist in adult cardiac tissue is exerted at the
level of translation because it was not prev 1991). It was suggested that the effects of the α_1 -adre-
noceptor agonist in adult cardiac tissue is exerted at the
level of translation because it was not prevented by
actinomycin D (Fuller et al., 1990). Thus, it ca noceptor agonist in adult cardiac tissue is exerted at the level of translation because it was not prevented by actinomycin D (Fuller et al., 1990). Thus, it can be postulated that these effects on protein synthesis can b level of translation because it was not prevented by
actinomycin D (Fuller et al., 1990). Thus, it can be
postulated that these effects on protein synthesis can be
dissociated from the effects of α_1 -adrenergic stimula actinomycin D (Fuller et al., 1990). Thus, it can
postulated that these effects on protein synthesis can
dissociated from the effects of α_1 -adrenergic stimulati
on cell growth and hypertrophy in neonatal cells whi
occ dissociated from the effects of α_1 -adrenergic stimulation
on cell growth and hypertrophy in neonatal cells which
occur at the level of transcription (see section V.D).
Mammalian atrial myocytes synthesize and secrete

on cell growth and hypertrophy in neonatal cells which
occur at the level of transcription (see section V.D).
Mammalian atrial myocytes synthesize and secrete a
potent natriuretic and vasoactive polypeptide hormone,
terme Mammalian atrial myocytes synthesize and secrete a other
potent natriuretic and vasoactive polypeptide hormone, of
termed ANP (Currie et al., 1983). Stimulation of α_1 pig
adrenoceptors enhances ANP secretion in adult termed ANP (Currie et al., 1983). Stimulation of α_1 - pig atria (Benfey and Varma, 1967; Govier, 1967).
adrenoceptors enhances ANP secretion in adult hearts
(Currie and Newman, 1986; Matsubara et al., 1987; Wong a posi termed ANP (Currie et al., 1983). Stimulation of a
adrenoceptors enhances ANP secretion in adult hear
(Currie and Newman, 1986; Matsubara et al., 1987; Wor
et al., 1988; Christensen et al., 1991). Using an in viv
model, La adrenoceptors enhances ANP secretion in adult hea
(Currie and Newman, 1986; Matsubara et al., 1987; We
et al., 1988; Christensen et al., 1991). Using an in v
model, Lachance and Garcia (1991) also observed a phe
ylephrine-(Currie and Newman, 1986; Matsubara et al., 1987; Won
et al., 1988; Christensen et al., 1991). Using an in viv
model, Lachance and Garcia (1991) also observed a phen
ylephrine-induced increase in circulating ANP concentrat et al., 1988; Christensen et al., 1991). Using an in vivo model, Lachance and Garcia (1991) also observed a phen-
ylephrine-induced increase in circulating ANP concentration. Furthermore, these authors showed that adre-
ne model, Lachance and Garcia (1991) also observed a phen-
ylephrine-induced increase in circulating ANP concen-
tration. Furthermore, these authors showed that adre-
nergic stimulation potentiates the ANP secretion trig-
19 ylephrine-induced increase in circulating ANP concertation. Furthermore, these authors showed that adentication potentiates the ANP secretion to gered by an increase in atrial wall tension. Sei a Glembotski (1990) reporte tration. Furthermore, these authors showed that adre-
nergic stimulation potentiates the ANP secretion trig-
gered by an increase in atrial wall tension. Sei and
Glembotski (1990) reported that α_1 -adrenergic stimula-
 mergic stimulation potentiates the ANP secretion trig-
gered by an increase in atrial wall tension. Sei and Gam
Glembotski (1990) reported that α_1 -adrenergic stimula-
1985
tion also triggered ANP secretion from atrial

ET AL.
nM with ethyleneglycol bis(β -aminoethyl ether)-
N,N,N',N'-tetraacetic acid or the blockade of Ca²⁺ chan-FT AL.

nM with ethyleneglycol bis(β -aminoethyl ether

N,N,N',N'-tetraacetic acid or the blockade of Ca²⁺ chan-

nels with nifedipine diminished by half the phenylep ET AL.

nM with ethyleneglycol bis(β -aminoethyl ether)-

N,N,N',N'-tetraacetic acid or the blockade of Ca²⁺ chan-

nels with nifedipine diminished by half the phenyleph-

rine-induced ANP secretion. Schiebinger et al nM with ethyleneglycol bis(β -aminoethyl ether)
N,N,N',N'-tetraacetic acid or the blockade of Ca²⁺ chan
nels with nifedipine diminished by half the phenyleph
rine-induced ANP secretion. Schiebinger et al. (1992
descri nels with nifedipine diminished by half the phenylephrine-induced ANP secretion. Schiebinger et al. (1992) described a Ca²⁺ influx as mandatory for α_1 -adrenoceptor agonists to release ANP from rat isolated atria.
Li ls with nifedipine diminished by half the phenyleph-
ne-induced ANP secretion. Schiebinger et al. (1992)
scribed a Ca²⁺ influx as mandatory for α_1 -adrenoceptor
onists to release ANP from rat isolated atria.
Lindeman

rine-induced ANP secretion. Schiebinger et al. (1992)
described a Ca²⁺ influx as mandatory for α_1 -adrenoceptor
agonists to release ANP from rat isolated atria.
Lindemann (1986) showed that a sarcolemmal 15-kDa
prote described a Ca²⁺ influx as mandatory for α_1 -adrenoceptor agonists to release ANP from rat isolated atria.
Lindemann (1986) showed that a sarcolemmal 15-kDa protein was phosphorylated following the stimulation of rat differentiative of the Hartmann (1986) showed that a sarcolemmal 15-kDa
protein was phosphorylated following the stimulation of
rat ventricles with α_1 -adrenoceptor agonists. Meij et al.
(1991) and Hartmann and Schrade Eindemann (1960) showed that a sarcolemmal 15-KD
protein was phosphorylated following the stimulation
rat ventricles with α_1 -adrenoceptor agonists. Meij et a
(1991) and Hartmann and Schrader (1992) reported the
this p protein was phosphorylated following the stimulation of
rat ventricles with α_1 -adrenoceptor agonists. Meij et al.
(1991) and Hartmann and Schrader (1992) reported that
this protein was also phosphorylated following th rat ventricles with α_1 -adrenoceptor agonists. Meij et al. (1991) and Hartmann and Schrader (1992) reported that this protein was also phosphorylated following the treatment of cultured neonatal and adult cardiomyocyte (1991) and Hartmann and Schrader (1992) reported this protein was also phosphorylated following the treement of cultured neonatal and adult cardiomyocytes we phorbol esters. It was proposed that this phosphorylatic could this protein was also phosphorylated following the treat-
ment of cultured neonatal and adult cardiomyocytes with
phorbol esters. It was proposed that this phosphorylation
could play a role in the down-regulation of the r phorbol esters. It was proposed that this phosphorylation
cold play a role in the down-regulation of the respon-
siveness of cardiac tissue to α_1 -adrenergic stimulation. A
protein with an apparent molecular mass of 15 siveness of cardiac tissue to α_1 -adrenergic stimulation. A could play a role in the down-regulation of the responsiveness of cardiac tissue to α_1 -adrenergic stimulation. A protein with an apparent molecular mass of 15 kDa in sodium dodecyl sulfate-polyacrylamide gel electroph siveness of cardiac tissue to α_1 -adrenergic stimulation. A
protein with an apparent molecular mass of 15 kDa in
sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis has been purified, cloned, and sequenced. It protein with an apparent molecular mass of 15 kDa in
sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis has been purified, cloned, and sequenced. It has a
calculated molecular mass of 8.4 kDa and was named
"phosph sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis has been purified, cloned, and sequenced. It has a
calculated molecular mass of 8.4 kDa and was named
"phospholemman" (Palmer et al., 1991). It was speculated
tha sis has been purified, cloned, and sequenced. It has a calculated molecular mass of 8.4 kDa and was named "phospholemman" (Palmer et al., 1991). It was speculated that its phosphorylation could modulate the activity of col calculated molecular mass of 8.4 kDa and was named
"phospholemman" (Palmer et al., 1991). It was speculated
that its phosphorylation could modulate the activity of
colocalized channels, pumps, and/or antiporters by al-
ter "phospholemman" (Palmer et al., 1991). It was speculated
that its phosphorylation could modulate the activity of
colocalized channels, pumps, and/or antiporters by al-
tering sarcolemmal surface charges or, as recent data that its phosphorylation could modulate the activity of
colocalized channels, pumps, and/or antiporters by al-
tering sarcolemmal surface charges or, as recent data
indicate, that this protein could be a chloride channel b tering sarcolemmal surface charges or, as recent data indicate, that this protein could be a chloride channel by itself (Moorman et al., 1992). In contrast to the studies performed in rat ventricles or isolated cells, Edes kDa protein following α_1 -adrenergic or phorbol ester indicate, that this protein could be a chloride channel by
itself (Moorman et al., 1992). In contrast to the studies
performed in rat ventricles or isolated cells, Edes et al.
(1991) failed to observe any phosphorylation itself (Moorman et al., 1992). In contrast to the studie
performed in rat ventricles or isolated cells, Edes et a
(1991) failed to observe any phosphorylation of the 18
kDa protein following α_1 -adrenergic or phorbol e performed in rat ventrictes of isolated cens, Edes et al.
(1991) failed to observe any phosphorylation of the 15-
kDa protein following α_1 -adrenergic or phorbol ester
treatment of beating guinea pig hearts. This was p ADA protein following α_1 -adrenergic or phorbot es
treatment of beating guinea pig hearts. This was pro
ably related to the animal species they used becau
Talosi and Kranias (1992) showed a phosphorylation
this sarcole treatment of beating guinea pig hearts. This was probably related to the animal species they used because Talosi and Kranias (1992) showed a phosphorylation of this sarcolemmal protein following α_1 -adrenergic stimulat ably related to the animal species they used because
Talosi and Kranias (1992) showed a phosphorylation of
this sarcolemmal protein following α_1 -adrenergic stimu-
lation of rabbit hearts. In addition, a cytosolic 28-k Talosi and Kranias (1992)
this sarcolemmal protein
lation of rabbit hearts. I
protein was also found t
exposure to phenylephrir **In the Solution Algeben Control** in was also found to be phosphorylated

in was also found to be phosphorylated

ure to phenylephrine.
 V. Physiological and Pathophysiological and Pathophysiological and Pathophysiologic otein was also found to be phosphorylated following
posure to phenylephrine.
V. Physiological and Pathophysiological
Consequences of α_1 -Adrenoceptor Stimulation
 α_1 -Adrenoceptors and Inotropy

A. a₁-Adrenoceptors and Inotropy
A. α_1 *-Adrenoceptors and Inotropy*
A. α_1 *-Adrenoceptors and Inotropy*
In 1966. Wenzel and Su were the V. Physiological and Pathophysiological
Consequences of α_1 -Adrenoceptor Stimulation
 α_1 -Adrenoceptors and Inotropy
In 1966, Wenzel and Su were the first to report a

postulated that these effects on protein synthesis can be
 $A. \alpha_1$ -Adrenoceptors and Inotropy

dissociated from the effects of α_1 -adrenergic stimulation

on cell growth and hypertrophy in neonatal cells which

occur **Consequences of** α_1 **-Adrenoceptor Stimulation**
A. α_1 -Adrenoceptors and Inotropy
In 1966, Wenzel and Su were the first to report a
positive inotropic effect of an α_1 -adrenoceptor agonist,
phenylephrine, in rat v A. α_1 -Adrenoceptors and Inotropy
In 1966, Wenzel and Su were the first to report apositive inotropic effect of an α_1 -adrenoceptor agonist
phenylephrine, in rat ventricular strips. Soon thereafter
other investigato A. α_1 -Adrenbeeptors and Thotropy
In 1966, Wenzel and Su were the first to report a
positive inotropic effect of an α_1 -adrenoceptor agonist,
phenylephrine, in rat ventricular strips. Soon thereafter,
other investig In 1966, Wenzel and Su were the first to report a
positive inotropic effect of an α_1 -adrenoceptor agonist,
phenylephrine, in rat ventricular strips. Soon thereafter,
other investigators observed the positive inotropic positive inotropic effect of an α_1 -adrenoceptor ago
phenylephrine, in rat ventricular strips. Soon theree
other investigators observed the positive inotropic e
of various α_1 -adrenoceptor agonists in rabbit and gu
 enylephrine, in rat ventricular strips. Soon thereafter,
her investigators observed the positive inotropic effect
various α_1 -adrenoceptor agonists in rabbit and guinea
g atria (Benfey and Varma, 1967; Govier, 1967).
S

a positive inotropic effect in different cardiac preparations (whole hearts, papillary muscles, ventricular strips, pig atria (Benfey and Varma, 1967; Govier, 1967).
Stimulation of myocardial α_1 -adrenoceptors produces
a positive inotropic effect in different cardiac prepara-
tions (whole hearts, papillary muscles, ventricular strip Stimulation of myocardial α_1 -adrenoceptors produces
a positive inotropic effect in different cardiac prepara-
tions (whole hearts, papillary muscles, ventricular strips,
atria, isolated cardiomyocytes) from several sp a positive inotropic effect in different cardiac prepara-
tions (whole hearts, papillary muscles, ventricular strips,
atria, isolated cardiomyocytes) from several species (rat,
rabbit, guinea pig, cat, lamb, cow, dog, monk tions (whole hearts, papillary muscles, ventricular strips,
atria, isolated cardiomyocytes) from several species (rat,
rabbit, guinea pig, cat, lamb, cow, dog, monkey) (Wagner
and Brodde, 1978; Shibata et al., 1980; Skomed atria, isolated cardiomyocytes) from several species (rat, rabbit, guinea pig, cat, lamb, cow, dog, monkey) (Wagner and Brodde, 1978; Shibata et al., 1980; Skomedal et al., 1983; Terzic and Vogel, 1990; Fedida and Bouchard rabbit, guinea pig, cat, lamb, cow, dog, monkey) (Wagner
and Brodde, 1978; Shibata et al., 1980; Skomedal et al.,
1983; Terzic and Vogel, 1990; Fedida and Bouchard, 1992;
Gambassi et al., 1992; for review, see Brückner et and Brodde, 1978; Shibata et al., 1980; Skomedal et al., 1983; Terzic and Vogel, 1990; Fedida and Bouchard, 1992; Gambassi et al., 1992; for review, see Brückner et al., 1985; Osnes et al., 1985; Endoh, 1986, 1991; Scholz 1983; Terzic and Vogel, 1990; Fedida and Bouchard, 1992;
Gambassi et al., 1992; for review, see Brückner et al.,
1985; Osnes et al., 1985; Endoh, 1986, 1991; Scholz et al.,
1986; Benfey, 1987; Nawrath, 1989; Pucéat et al.,

CARDIAC α_1 -AL
contribution of the α_1 -adrenoceptor to the inotropic re-
sponse of heart muscle to endogenous catecholamines in CARDIAC α_1 -ADRENC
contribution of the α_1 -adrenoceptor to the inotropic re-cours
sponse of heart muscle to endogenous catecholamines in 1964
the presence of unopposed β -adrenoceptors stimulation. al., CARDIAC α_1 -contribution of the α_1 -adrenoceptor to the inotropic response of heart muscle to endogenous catecholamines is
the presence of unopposed β -adrenoceptors stimulation.
These investigators estimated that contribution of the α_1 -adrenoceptor to the inotropic response of heart muscle to endogenous catecholamines in 19
the presence of unopposed β -adrenoceptors stimulation. al.
These investigators estimated that about 7 contribution of the α_1 -adrenoceptor to the inotropic sponse of heart muscle to endogenous catecholamines
the presence of unopposed β -adrenoceptors stimulation
These investigators estimated that about 75% of the
res sponse of heart muscle to endogenous catecholamines in
the presence of unopposed β -adrenoceptors stimulation.
These investigators estimated that about 75% of the
response to norepinephrine is mediated through β -adre These investigators estimated that about 75% of the
response to norepinephrine is mediated through β -adre-
noceptors and 25% via α_1 -adrenoceptor in rat cardiac
tissue. Concomitant muscarinic receptor stimulation in These investigators estimated that about 75% of the
response to norepinephrine is mediated through β -adre-
noceptors and 25% via α_1 -adrenoceptor in rat cardiac
tissue. Concomitant muscarinic receptor stimulation in response to norepinephrine is mediated through β -adre-noceptors and 25% via α_1 -adrenoceptor in rat cardiac tissue. Concomitant muscarinic receptor stimulation increases the α_1 -adrenoceptor component of the over 1987). sue. Concomitant muscarinic receptor stimulation in-
eases the α_1 -adrenoceptor component of the overall cotropic effect of norepinephrine (Christiansen et al., du
87).
As expected, selective α_2 -adrenoceptor agonis creases the α_1 -adrenoceptor component of the overall
inotropic effect of norepinephrine (Christiansen et al.,
1987). As expected, selective α_2 -adrenoceptor agonists cause
no positive inotropic effect (Williamson a

1987).

As expected, selective α_2 -adrenoceptor agonists cau

no positive inotropic effect (Williamson and Broadle

1987; Housmans, 1990). The selective α_1 -adrenocept

blocker, prazosin, in nanomolar concentrations As expected, selective α_2 -adrenoceptor agonists can o positive inotropic effect (Williamson and Broadl 1987; Housmans, 1990). The selective α_1 -adrenocep blocker, prazosin, in nanomolar concentrations, compitively 1987; Housmans, 1990). The selective α_1 -adrenoceptor persists for a long period (>20 min). A proportion (30%) blocker, prazosin, in nanomolar concentrations, compet-
itively inhibited the positive inotropic action of blocker, prazosin, in nanomolar concentrations, compet-
itively inhibited the positive inotropic action of phenyl-
ephrine (Skomedal et al., 1980). The nature of the α_1 -
adrenoceptor subtype(s) responsible for the pos blocker, prazosin, in nanomolar concentrations, compet-
itively inhibited the positive inotropic action of phenyl-
rangphrine (Skomedal et al., 1980). The nature of the α_1 -
adrenoceptor subtype(s) responsible for the itively inhibited the positive inotropic action of phenephrine (Skomedal et al., 1980). The nature of the *a*drenoceptor subtype(s) responsible for the positive inotropic effect is a matter of current investigation.
rabbi ephrine (Skomedal et al., 1980). The nature of the α_1 -
adrenoceptor subtype(s) responsible for the positive in-
otropic effect is a matter of current investigation. In
rabbit papillary muscle, the α_1 -adrenoceptoradrenoceptor-subtype(s) responsible for the positiotropic effect is a matter of current investigation-
rabbit papillary muscle, the α_1 -adrenoceptor-mechositive inotropic action is inhibited by the selective adrenocept otropic effect is a matter of current investigation. In was
rabbit papillary muscle, the α_1 -adrenoceptor-mediated On
positive inotropic action is inhibited by the selective α_{1B} - ino
adrenoceptor-alkylating agent rabbit papillary muscle, the α_1 -adrenoceptor-mediated
positive inotropic action is inhibited by the selective α_{1B} -
adrenoceptor-alkylating agent CEC in a concentration-
dependent manner (IC₅₀ = 2.4 μ M) and a positive inotropic action is inhibited by the selective α_{11}
adrenoceptor-alkylating agent CEC in a concentration
dependent manner (IC₅₀ = 2.4 μ M) and abolished by 1
 μ M CEC (Takanashi et al., 1991). Endoh et a adrenoceptor-alkylating agent CEC in a concentrat
dependent manner (IC₅₀ = 2.4 μ M) and abolished b
 μ M CEC (Takanashi et al., 1991). Endoh et al. (1
recently reported that WB-4101, the α_{1A} -subtype se
tive anta dependent manner (IC₅₀ = 2.4 μ M) and abolished by 10 μ M CEC (Takanashi et al., 1991). Endoh et al. (1992) recently reported that WB-4101, the α_{1A} -subtype selective antagonist, shifted to a small extent the co μ M CEC (Takanashi et al., 1991). Endoh et al. (1992)
recently reported that WB-4101, the α_{1A} -subtype selec-
tive antagonist, shifted to a small extent the concentra-
tion-response curve of the positive inotropic e recently reported that WB-4101, the α_{1A} -subtype selective antagonist, shifted to a small extent the concentra-
tion-response curve of the positive inotropic effect in-
duced by phenylephrine and suggested that the $\$ tive antagonist, shifted to a small extent the concentra-
tion-response curve of the positive inotropic effect in-
duced by phenylephrine and suggested that the α_{1A} - pa
subtype may also mediate the inotropic effect o tion-response curve of the positive inotropic effect in-
duced by phenylephrine and suggested that the α_{1A} -
subtype may also mediate the inotropic effect of α_1 -
agonists, although to a much smaller extent than th duced by phenylephrine and suggested that the α_{1A} - pap
subtype may also mediate the inotropic effect of α_{1} - tim-
agonists, although to a much smaller extent than the que
 α_{1B} -receptor. Michel et al. (1990) a subtype may also mediate the inotropic effect of α_1 -
agonists, although to a much smaller extent than the qu
 α_{1B} -receptor. Michel et al. (1990) also implicated the α_{1B} -
receptor subtype in mediating the inot α_{1B} -receptor. Michel et al. (1990) also implicated the α_{1B} -
receptor subtype in mediating the inotropic action. In
receptor subtype in mediating the inotropic action. In
contrast, preliminary recent reports sugg α_{1B} -receptor. Michel et al. (1990) also implicated the α_{1B} -
receptor subtype in mediating the inotropic action. In
contrast, preliminary recent reports suggest that the
stimulation of the α_{1A} -subtype, at le receptor subtype in mediating the inotropic action. In Als
contrast, preliminary recent reports suggest that the eni
stimulation of the α_{1A} -subtype, at least in rat tissue, is
responsible for the α_1 -adrenoceptorcontrast, preliminary recent reports suggest that the stimulation of the α_{1A} -subtype, at least in rat tissue, is responsible for the α_1 -adrenoceptor-mediated positive inotropic effects in both papillary muscle (R stimulation of the α_{1A} -subtype, at least in rat ti
responsible for the α_1 -adrenoceptor-mediated j
inotropic effects in both papillary muscle (Roko
Sulakhe, 1991) and isolated cells (Gambassi et al.
SZL-49 and WBresponsible for the α_1 -adrenoceptor-mediated positive a
inotropic effects in both papillary muscle (Rokosh and si
Sulakhe, 1991) and isolated cells (Gambassi et al., 1991).
SZL-49 and WB-4101 ihibited the norepinephri effect. nlakhe, 1991) and isolated cells (Gambassi et al., 1991)
ZL-49 and WB-4101 ihibited the norepinephrine-in-
ced increase in inotropy; CEC failed to prevent this
fect.
The positive inotropic effect resulting from the acti-
 SZL-49 and WB-4101 ihibited the norepinephrine-in-
duced increase in inotropy; CEC failed to prevent this CP
effect. 19
The positive inotropic effect resulting from the acti-
vation of α_1 -adrenoceptors varies in magni

duced increase in inotropy; CEC failed to prevent this Cleffect.

The positive inotropic effect resulting from the acti-

in vation of α_1 -adrenoceptors varies in magnitude from one to

species to another. Larger incre effect. 1988
The positive inotropic effect resulting from the activation of α_1 -adrenoceptors varies in magnitude from one to compete to another. Larger increases in developed force Sare found in the rat and rabbit tha The positive inotropic effect resulting from the acception of α_1 -adrenoceptors varies in magnitude from o species to another. Larger increases in developed for are found in the rat and rabbit than in the guinea μ a vation of α_1 -adrenoceptors varies in magnitude from one to species to another. Larger increases in developed force are found in the rat and rabbit than in the guinea pig te and dog myocardium (Scholz et al., 1986). Th species to another. Larger increases in developed force
are found in the rat and rabbit than in the guinea pig
and dog myocardium (Scholz et al., 1986). The differ-
ences among species could be related to the density of
and dog myocardium (Scholz et al., 1986). The differences among species could be related to the density of α_1 -adrenceptors (Mukherjee et al., 1983; Endoh et al., 1991). Nakanishi et al. (1989) compared the positive in and dog myocardium (Scholz et al., 1960). The differences among species could be related to the density of α_1 -adrenoceptors (Mukherjee et al., 1983; Endoh et al., 1991). Nakanishi et al. (1989) compared the positive i ences among species could be related to the density of α_1 -adrenoceptors (Mukherjee et al., 1983; Endoh et al., 1991). Nakanishi et al. (1989) compared the positive inotropic effect of α_1 -adrenoceptor agonists in n α_1 -adrenoceptors (Mukherjee et al., 1983; Endoh et al. 1991). Nakanishi et al. (1989) compared the positive inotropic effect of α_1 -adrenoceptor agonists in newbor and adult rats, rabbits, and dogs. For a given ago 1991). Nakanishi et al. (1989) compared the positive trop inotropic effect of α_1 -adrenoceptor agonists in newborn stim and adult rats, rabbits, and dogs. For a given agonist stim concentration, the effect was greater inotropic effect of α_1 -adrenoceptor agonists in newborn st
and adult rats, rabbits, and dogs. For a given agonist st
concentration, the effect was greater in the adult. How-
sever, beyond middle age, an aging-associat concentration, the effect was greater in the adult. How-
ever, beyond middle age, an aging-associated decline in
the maximum positive inotropic effect of α_1 -agonists was
reported (Kimball et al., 1991).
1. Characteris

Ever, beyond middle age, an aging-associated decime in between the maximum positive inotropic effect of α_1 -agonists was time reported (Kimball et al., 1991).
 1. Characteristics of the α_1 -adrenergic positive i

CARDIAC α_1 -ADRENOCEPTORS 157

i inotropic re-course including a negative inotropic component (Govier, cholamines in 1968; Skomedal et al., 1983; Osnes et al., 1985; Tohse et al., 1987a; Otani et al., 1988; Ertl et al., 1991). For ENOCEPTORS 157
course including a negative inotropic component (Govier,
1968; Skomedal et al., 1983; Osnes et al., 1985; Tohse et
al., 1987a; Otani et al., 1988; Ertl et al., 1991). For
example, stimulation of α_1 -adre course including a negative inotropic component (Govier, 1968; Skomedal et al., 1983; Osnes et al., 1985; Tohse et al., 1987a; Otani et al., 1988; Ertl et al., 1991). For example, stimulation of α_1 -adrenoceptors in ra course including a negative inotropic component (Govier, 1968; Skomedal et al., 1983; Osnes et al., 1985; Tohse et al., 1987a; Otani et al., 1988; Ertl et al., 1991). For example, stimulation of α_1 -adrenoceptors in ra 1987a; Otani et al., 1988; Ertl et al., 1991). For
al., 1987a; Otani et al., 1988; Ertl et al., 1991). For
example, stimulation of α_1 -adrenoceptors in rat papillary
muscles results in a triphasic inotropic response. A example, stimulation of α_1 -adrenoceptors in rat papillary
muscles results in a triphasic inotropic response. An
initial increase in contractile force (phase 1) appears
immediately, reaching a maximum level within 30 s muscles results in a triphasic inotropic response. An initial increase in contractile force (phase 1) appears immediately, reaching a maximum level within 30 s. The contractile force then declines below the baseline, produ initial increase in contractile force (phase 1) appears
immediately, reaching a maximum level within 30 s. The
contractile force then declines below the baseline, pro-
ducing a negative inotropic phase (phase 2) that reach immediately, reaching a maximum level within 30 s. The
contractile force then declines below the baseline, pro-
ducing a negative inotropic phase (phase 2) that reaches
a maximum level at 80 to 90 s. The second increase in contractile force then declines below the baseline, pro-
ducing a negative inotropic phase (phase 2) that reaches
a maximum level at 80 to 90 s. The second increase in
contractile force (phase 3) is more pronounced than t a maximum level at 80 to 90 s. The second increase in contractile force (phase 3) is more pronounced than that of phase 1. It reaches a maximum level at 5 to 6 min and persists for a long period (>20 min). A proportion (3 contractile force (phase 3) is inferentiated that
of phase 1. It reaches a maximum level at 5 to 6 mi
persists for a long period (>20 min). A proportion
of frog atrial trabeculae responds to α -stimulation
transient res phase 1. It reaches a maximum level at 5 to 6 min and
rsists for a long period (>20 min). A proportion (30%)
frog atrial trabeculae responds to α -stimulation by a
ansient response (Niedergerke and Page, 1981).
A detail

bersists for a long period (>20 mm). A proportion (30%)
of frog atrial trabeculae responds to α -stimulation by a
transient response (Niedergerke and Page, 1981).
A detailed account of the characteristics of the stead of frog atrial trabecture responds to α -stimulation by a
transient response (Niedergerke and Page, 1981).
A detailed account of the characteristics of the steady
state positive inotropic effect of α_1 -adrenoceptor-m A detailed account of the characteristics of the stea
state positive inotropic effect of α_1 -adrenoceptor agonis
was presented by Osnes et al. (1985) and Endoh (198
One property of the α_1 -adrenoceptor-mediated posi state positive inotropic effect of α_1 -adrenoceptor agonists
was presented by Osnes et al. (1985) and Endoh (1986).
One property of the α_1 -adrenoceptor-mediated positive
inotropic effect is an increase in the contr was presented by Osnes et al. (1985) and Endoh (1986).

One property of the α_1 -adrenoceptor-mediated positive

inotropic effect is an increase in the contraction ampli-

tude with no change or a slight prolongation in One property of the α_1 -adrenoceptor-mediated positive
inotropic effect is an increase in the contraction ampli-
tude with no change or a slight prolongation in the
duration of the contraction-relaxation cycle; there i inotropic effect is an increase in the contraction ampli-
tude with no change or a slight prolongation in the
duration of the contraction-relaxation cycle; there is also
no change or a slight increase in time to peak tens tude with no change or a slight prolongation in the
duration of the contraction-relaxation cycle; there is also
no change or a slight increase in time to peak tension
and relaxation time (Ledda et al., 1975; Endoh and
Blin duration of the contraction-relaxation cycle; there is also
no change or a slight increase in time to peak tension
and relaxation time (Ledda et al., 1975; Endoh and
Blinks, 1988; Skomedal et al., 1983; El Amrani et al.,
1 no change or a slight increase in time to peak tension
and relaxation time (Ledda et al., 1975; Endoh and
Blinks, 1988; Skomedal et al., 1983; El Amrani et al.,
1989). Li and Rouleau (1991) recently studied rabbit
papilla Blinks, 1988; Skomedal et al., 1970, Endon and Blinks, 1988; Skomedal et al., 1983; El Amrani et al., 1989). Li and Rouleau (1991) recently studied rabbit papillary muscle and reported a significant increase in time to pe 1989). Li and Rouleau (1991) recently studied rabbit papillary muscle and reported a significant increase in time to peak tension and in relaxation time. Consequently, all phases of the cycle are proportionally increased papillary muscle and reported a significant increase
time to peak tension and in relaxation time. Cons
quently, all phases of the cycle are proportionally i
creased in the presence of an α_1 -adrenoceptor agonii
Also, a quently, all phases of the cycle are propor
creased in the presence of an α_1 -adrenocep
Also, an increase in the V_{max} of unloaded m
ening was observed (Li and Rouleau, 1991).
Phosphodiesterase inhibitors (e.g., theop quently, all phases of the cycle are proportionally increased in the presence of an α_1 -adrenoceptor agonist.
Also, an increase in the V_{max} of unloaded muscle shortening was observed (Li and Rouleau, 1991).
Phosphodi A detailed account of the characteristics of the steady
state positive inotropic effect of α_1 -adrenoceptor agonists)
since at al. (1985) and Endoh (1986).
We are response to al. (1985) and Endoh (1986).
One property o

ening was observed (Li and Rouleau, 1991).

Phosphodiesterase inhibitors (e.g., theophylline) and

adenylate cyclase inhibitors (i.e., muscarinic and adeno-

sine agonists) do not affect the inotropic response of

cardiac Phosphodiesterase inhibitors (e.g., theophylline) and
adenylate cyclase inhibitors (i.e., muscarinic and adeno-
sine agonists) do not affect the inotropic response of
cardiac muscle to α_1 -adrenoceptor stimulation (End adenyiate cyclose inhibitors (i.e., muscarint and adeno-
sine agonists) do not affect the inotropic response of
cardiac muscle to α_1 -adrenoceptor stimulation (Endoh
and Motomura, 1979; Endoh and Yamashita, 1980;
Chris sine agomsts) do not ariect the motropic response of cardiac muscle to α_1 -adrenoceptor stimulation (Endoh and Motomura, 1979; Endoh and Yamashita, 1980; Christiansen et al., 1987; for review, see Osnes et al., 1985; E to cAMP. Unistialised et al., 1567, for review, see Osnes et al., 1985; Endoh, 1991). This is expected because the positive inotropic effect of α_1 -adrenoceptor agonists is unrelated to cAMP.
Some experimental conditions (e.g.,

i. ever, beyond middle age, an aging-associated decline in bathing solution from 37°C to 32°C shifts the concentra-
the maximum positive inotropic effect of α_1 -agonists was tion-response curve for phenylephrine to t inotropic effect of α_1 -adrenoceptor agonists is unrelated
to cAMP.
Some experimental conditions (e.g., pacing frequency,
temperature, and Ca²⁺ concentration of the bathing so-
lution) can affect the magnitude of the to cAMP.
Some experimental conditions (e.g., pacing frequency,
temperature, and Ca²⁺ concentration of the bathing so-
lution) can affect the magnitude of the positive inotropic
response to α_1 -adrenoceptor agonists (Some experimental conditions (e.g., pacing frequency,
temperature, and Ca^{2+} concentration of the bathing so-
lution) can affect the magnitude of the positive inotropic
response to α_1 -adrenoceptor agonists (reviewed temperature, and Ca²⁺ concentration of the bathing so-
lution) can affect the magnitude of the positive inotropic
response to α_1 -adrenoceptor agonists (reviewed by En-
doh, 1986). The α_1 -adrenoceptor-mediated po lution) can affect the magnitude of the positive inotropic
response to α_1 -adrenoceptor agonists (reviewed by En-
doh, 1986). The α_1 -adrenoceptor-mediated positive ino-
tropic effect is most prominent at a low rate doh, 1986). The α_1 -adrenoceptor-mediated positive ino-
tropic effect is most prominent at a low rate of muscle
stimulation (0.5 Hz) and decreases or is absent at high
stimulating frequencies (Endoh and Schümann, 1975; doh, 1986). The α_1 -adrenoceptor-mediated positive ino-
tropic effect is most prominent at a low rate of muscle
stimulation (0.5 Hz) and decreases or is absent at high
stimulating frequencies (Endoh and Schümann, 1975; tropic effect is most prominent at a low rate of must
stimulation (0.5 Hz) and decreases or is absent at
stimulating frequencies (Endoh and Schümann, 1
Scholz et al., 1986). Lowering the temperature of
bathing solution fr stimulation (0.5 Hz) and decreases or is absent at high
stimulating frequencies (Endoh and Schümann, 1975;
Scholz et al., 1986). Lowering the temperature of the
bathing solution from 37°C to 32°C shifts the concentra-
tion stimulating frequencies (Endoh and Schümann, 1975;
Scholz et al., 1986). Lowering the temperature of the
bathing solution from 37°C to 32°C shifts the concentra-
tion-response curve for phenylephrine to the left (Endoh
et bathing solution from 37°C to 32°C shifts the concentrion-response curve for phenylephrine to the left (End
et al., 1977). An important modulator of the magnitu
of the positive inotropic response to α_1 -adrenocept
agon bathing solution from 37 C to 32 C shifts the concentration-response curve for phenylephrine to the left (Endoh et al., 1977). An important modulator of the magnitude of the positive inotropic response to α_1

158 TERZIC ET AL. 158

effect of phenylephrine in the lower concentration range

(1 to 100 nM) requires the presence of an intact endocar-

19 TE
(1 to 100 nM) requires in the lower concentration ra
(1 to 100 nM) requires the presence of an intact endoc
dial endothelium. Higher concentrations of phenyle The 158
effect of phenylephrine in the lower concentration re
(1 to 100 nM) requires the presence of an intact endo
dial endothelium. Higher concentrations of phenyle
rine destroy the endocardial endothelium and shift effect of phenylephrine in the lower concentration range
(1 to 100 nM) requires the presence of an intact endocar-
dial endothelium. Higher concentrations of phenyleph-
rine destroy the endocardial endothelium and shift t (1 to 100 nM) requires the presence of an intact endocar-
dial endothelium. Higher concentrations of phenyleph-
rine destroy the endocardial endothelium and shift the duced in number, by more than half, as compared with
d higher concentrations. al endothelium. Higher concentrations of phenyleph-
he destroy the endocardial endothelium and shift the
se-response curve of α_1 -adrenergic agonists toward
gher concentrations.
Increasing the Ca²⁺ concentration of t

rine destroy the endocardial endothelium and shift the dose-response curve of α_1 -adrenergic agonists toward higher concentrations.
Increasing the Ca²⁺ concentration of the bathing solution to 5 mM results, at least dose-response curve of α_1 -adrenergic agonists tows
higher concentrations.
Increasing the Ca²⁺ concentration of the bathing
lution to 5 mM results, at least in isolated ventricu
cells, in a sustained negative inotrop higher concentrations.
Increasing the Ca²⁺ concentration of the bathing so-
lution to 5 mM results, at least in isolated ventricular
cells, in a sustained negative inotropic effect to α_1 -adre-
noceptor agonists (Cap Increasing the Ca²⁺ concentration of the bathing so-
lution to 5 mM results, at least in isolated ventricular
cells, in a sustained negative inotropic effect to α_1 -adre-
moceptor agonists (Capogrossi et al., 1991). lution to 5 mM results, at least in isolated ventricular cells, in a sustained negative inotropic effect to α_1 -adre-noceptor agonists (Capogrossi et al., 1991). This negative inotropic effect cannot be ascribed to $Ca^{$ cells, in a sustained negative inotropic effect to α_1 -adre-
noceptor agonists (Capogrossi et al., 1991). This negative the
inotropic effect cannot be ascribed to Ca²⁺ overload ob
because α_1 -adrenoceptor agonists noceptor agonists (Capogrossi et al., 1991). This negative
inotropic effect cannot be ascribed to Ca^{2+} overload
because α_1 -adrenoceptor agonists suppress spontaneous
 Ca^{2+} release from the sarcoplasmic reticulum because α_1 -adrenoceptor agonists suppress spontaneous
Ca²⁺ release from the sarcoplasmic reticulum of isolated
cells usually observed under this experimental condition.
This negative inotropic effect was ascribed to Ca²⁺ release from the sarcoplasmic reticulum of isolated whether endogenous catecholamines could support carcells usually observed under this experimental condition. diac function in heart failure via the myocardial α Ca²⁺ release from the sarcoplasmic reticulum of isolated
cells usually observed under this experimental condition.
This negative inotropic effect was ascribed to an en-
hanced α_1 -adrenoceptor-mediated activation of cells usually observed under this experimental condition. dia
This negative inotropic effect was ascribed to an en-
hanced α_1 -adrenoceptor-mediated activation of PKC l
when intracellular Ca^{2+} is increased by high e This negative inotropic effect was ascribed to an hanced α_1 -adrenoceptor-mediated activation of I
when intracellular Ca²⁺ is increased by high exte
Ca²⁺ (Capogrossi et al., 1991). However, it should
pointed out th hanced α_1 -adrenoceptor-mediated activation of
when intracellular Ca^{2+} is increased by high ext
 Ca^{2+} (Capogrossi et al., 1991). However, it shoul
pointed out that even at higher external Ca^{2+} conce
tions (>7.5 when intracellular Ca^{2+} is increased by high external Ca^{2+} (Capogrossi et al., 1991). However, it should be pointed out that even at higher external Ca^{2+} concentrations (>7.5 mM) a positive inotropic effect of Ca^{2+} (Capogrossi et al., 1991). However, it should be pointed out that even at higher external Ca^{2+} concentrations (>7.5 mM) a positive inotropic effect of phenylephrine, albeit small, was observed in papillary or pointed out that even at higher external Ca²⁺ concentra-
tions (>7.5 mM) a positive inotropic effect of phenyleph-
rine, albeit small, was observed in papillary or atrial low
muscle (Meulemans et al., 1990; Li and Roulea tions (>7.5 mM) a positive inotropic effect of phenyleph-
rine, albeit small, was observed in papillary or atrial
muscle (Meulemans et al., 1990; Li and Rouleau, 1991;
Terzic and Vogel, 1991). It is not known what could
ex rine, albeit small, was observed in papillary or atrial muscle (Meulemans et al., 1990; Li and Rouleau, 1991; Terzic and Vogel, 1991). It is not known what could explain this difference between isolated cardiomyocytes and muscle (Meulemans et al., 1990; Li and Rouleau, 199
Terzic and Vogel, 1991). It is not known what cours
explain this difference between isolated cardiomyocyt
and intact muscle. A possible explanation could be the
isolated Terzic and Vogel, 1991). It is not known what could
explain this difference between isolated cardiomyocytes
and intact muscle. A possible explanation could be that
isolated cells have a diminished tolerance to Ca^{2+} . Mo explain this difference between isolated cardiomyocytes
and intact muscle. A possible explanation could be that
isolated cells have a diminished tolerance to Ca^{2+} . Mold-
erings and Schümann (1987) also reported that, u and intact muscle. A possible explanation could be that isolated cells have a diminished tolerance to Ca^{2+} . Molderings and Schümann (1987) also reported that, under some experimental conditions, the magnitude of the in isolated cells have a diminished tolerance to Ca^{2+} . Molerings and Schümann (1987) also reported that, und
some experimental conditions, the magnitude of the i
crease in inotropy induced by α_1 -adrenoceptor agonis
co erings and Schümann (1987) also reported that, under
some experimental conditions, the magnitude of the in-
crease in inotropy induced by α_1 -adrenoceptor agonists
could depend on the extracellular Ca^{2+} concentratio some experimental conditions, the magnitude of the in-
crease in inotropy induced by α_1 -adrenoceptor agonists
could depend on the extracellular Ca^{2+} concentration.
These authors showed that inhibition of cyclooxyge crease in inotropy induced by α_1 -adrenoceptor agonists not could depend on the extracellular Ca^{2+} concentration. These authors showed that inhibition of cyclooxygenase increased the α_1 -adrenoceptor-mediated pos could depend on the extracellular Ca^{2+} concentration.
These authors showed that inhibition of cyclooxygenase
increased the α_1 -adrenoceptor-mediated positive ino-
tropic effect at low agonist concentrations when the These authors showed that inhibition of cyclooxygenase
increased the α_1 -adrenoceptor-mediated positive ino-
tropic effect at low agonist concentrations when the atria-
were bathed in 1.2 mM Ca²⁺. This effect was not creased the α_1 -adrenoceptor-mediated positive ino-
 2. apic effect at low agonist concentrations when the atria ifice
 2. a₁-Adrenoceptor-mediated positive inotropic effect in adre
 2. a₁-Adrenoceptor-mediate

tropic effect at low agonist concentrations when the atria if
were bathed in 1.2 mM Ca²⁺. This effect was not further
observed when external Ca²⁺ was elevated to 2.5 mM.
2. α_1 -Adrenoceptor-mediated positive inotro observed when external Ca²⁺ was elevated to 2.5 mM.
2. α_1 -Adrenoceptor-mediated positive inotropic effect in
pathological conditions. It has been proposed that α_1 -
adrenoceptors might serve as a reserve mechanis 2. α_1 -Adrenoceptor-mediated positive inotropic effect in pathological conditions. It has been proposed that α_1 -adrenoceptors might serve as a reserve mechanism to maintain myocardial responsiveness to catecholamin pathological conditions. It has been proposed that a adrenoceptors might serve as a reserve mechanism maintain myocardial responsiveness to cate cholaming under conditions in which the β -adrenoceptor is block functiona adrenoceptors might serve as a reserve mechanism to
maintain myocardial responsiveness to cate cholamines
under conditions in which the β -adrenoceptor is blocked,
functionally antagonized, reduced in number, or uncou-
 maintain myocardial responsiveness to catecholami
under conditions in which the β -adrenoceptor is block
functionally antagonized, reduced in number, or unc
pled from its transduction pathway (Brückner et
1985; Osnes et under conditions in which the β -adrenoceptor is blocked, co
functionally antagonized, reduced in number, or uncou-
pled from its transduction pathway (Brückner et al., H
1985; Osnes et al., 1985; Homcy et al., 1991). F functionally antagonized, reduced in number, or uncou-
pled from its transduction pathway (Brückner et al., How
1985; Osnes et al., 1985; Homcy et al., 1991). Further- in the
more, several pathological and clinical situat pled from its transduction pathway (Brückner et al., 1985; Osnes et al., 1985; Homcy et al., 1991). Furthermore, several pathological and clinical situations modify f the density of α_1 -adrenergic receptors in the myoc 1985; Osnes et al., 1985; Homcy et al., 1991). Furthemore, several pathological and clinical situations modit the density of α_1 -adrenergic receptors in the myocardiu which could be associated with an increase in the p the density of α_1 -adrenergic receptors in the myocardium
which could be associated with an increase in the positive
inotropic effect induced by α_1 -adreneceptors agonists.
For example, chronic treatment with β -a inotropic effect induced by α_1 -adrenoceptors agonists.

tagonists augments the number of myocardial α_1 -adrenoceptors (Mügge et al., 1985). This propranolol-induced increase in the density of α_1 -adrenoceptors is inhibited For example, chronic treatment with β -adrenergic an-
tagonists augments the number of myocardial α_1 -adre-
noceptors (Mügge et al., 1985). This propranolol-induced The effect of dietary fish oil on cardiac function For example, chronic treatment with β -adrenergic antagonists augments the number of myocardial α_1 -adrenoceptors (Mügge et al., 1985). This propranolol-induced increase in the density of α_1 -adrenoceptors is inhi tagonists augments the number of myocardial α_1 -adre-noceptors (Mügge et al., 1985). This propranolol-induced increase in the density of α_1 -adrenoceptors is inhibited by cycloheximide, an inhibitor of protein synth moceptors (Mügge et al., 1985). This propranolol-induced
increase in the density of α_1 -adrenoceptors is inhibited res
by cycloheximide, an inhibitor of protein synthesis, sug-
ingesting that it was due to de novo rece increase in the density of α_1 -adrenoceptors is inhibity cycloheximide, an inhibitor of protein synthesis, sugesting that it was due to de novo receptor synthe (Steinkraus et al., 1989). At least in rat hearts, tuncrea by cycloheximide, an inhibitor of protein synthesis, suggesting that it was due to de novo receptor synthesis (Steinkraus et al., 1989). At least in rat hearts, the increase in α_1 -adrenoceptors density was not accompa

TERZIC ET AL.
range response to α_1 -adrenergic agonists (Steinkraus et al., 1989).

AL.
sponse to α_1 -adrenergic agonists (Steinkraus et al., 89).
In congestive heart failure, β -adrenoceptors are re-
ced in number, by more than half, as compared with response to α_1 -adrenergic agonists (Steinkraus et al., 1989).
In congestive heart failure, β -adrenoceptors are re-
duced in number, by more than half, as compared with
normally functioning hearts (Bristow et al., 1 response to α_1 -adrenergic agonists (Steinkraus et al., 1989).
In congestive heart failure, β -adrenoceptors are re-
duced in number, by more than half, as compared with
normally functioning hearts (Bristow et al., 1 1989).
In congestive heart failure, β -adrenoceptors are
duced in number, by more than half, as compared w
normally functioning hearts (Bristow et al., 1982). T
reduction is accompanied by a decrease in the bioche
ical In congestive heart failure, β -adrenoceptors are re-
duced in number, by more than half, as compared with
normally functioning hearts (Bristow et al., 1982). This
reduction is accompanied by a decrease in the biochem-
 reduction is accompanied by a decrease in the biochemical and inotropic responsiveness of cardiac tissue to β -
adrenoceptor agonists (Bristow et al., 1985). No difference in the absolute density of α_1 -adrenoceptors or in the α_1 -adrenoceptor-mediated effects on PIs has been reduction is accompanied by a decrease in the biochemical and inotropic responsiveness of cardiac tissue to β -adrenoceptor agonists (Bristow et al., 1985). No difference in the absolute density of α_1 -adrenoceptors ical and inotropic responsiveness of cardiac tissue to β -
adrenoceptor agonists (Bristow et al., 1985). No differ-
ence in the absolute density of α_1 -adrenoceptors or in
the α_1 -adrenoceptor-mediated effects on adrenoceptor agonists (Bristow et al., 1985). No difference in the absolute density of α_1 -adrenoceptors or in the α_1 -adrenoceptor-mediated effects on PIs has been observed in the failing when compared to the nonfa ence in the absolute density of α_1 -adrenoceptors or in
the α_1 -adrenoceptor-mediated effects on PIs has been
observed in the failing when compared to the nonfailing
heart (Bristow et al., 1988). The question remain the α_1 -adrenoceptor-mediated effects on PIs has been
observed in the failing when compared to the nonfailing
heart (Bristow et al., 1988). The question remains
whether endogenous catecholamines could support car-
diac heart (Bristow et al., 1988). The question remains

Hearts isolated from cardiomyopathic Syrian hamsters show an enhanced positive inotropic response to α_1 diac function in heart failure via the myocardial α_1 -
adrenoceptor (Schmitz et al., 1987a).
Hearts isolated from cardiomyopathic Syrian hamsters
show an enhanced positive inotropic response to α_1 -
adrenoceptors (B adrenoceptor (Schmitz et al., 1987a).
Hearts isolated from cardiomyopathic Syrian hamsters
show an enhanced positive inotropic response to α_1 -
adrenoceptors (Böhm et al., 1986; Sen et al., 1990).
Horackova et al. (199 Hearts isolated from cardiomyopathic Syrian hamsters
show an enhanced positive inotropic response to α_1 -
adrenoceptors (Böhm et al., 1986; Sen et al., 1990).
Horackova et al. (1991) showed that the EC₅₀ for the $\alpha_$ show an enhanced positive inotropic response to α_1 -
adrenoceptors (Böhm et al., 1986; Sen et al., 1990).
Horackova et al. (1991) showed that the EC₅₀ for the α_1 -
adrenoceptor-mediated positive inotropic effect w adrenoceptors (Böhm et al., 1986; Sen et al., 1990).
Horackova et al. (1991) showed that the EC_{50} for the α_1 -
adrenoceptor-mediated positive inotropic effect was 50%
lower in cardiomyopathic than in normal hamsters Horackova et al. (1991) showed that the EC₅₀ for the α_1 -
adrenoceptor-mediated positive inotropic effect was 50%
lower in cardiomyopathic than in normal hamsters. With
the progression of cardiomyopathy, β -adrenoc adrenoceptor-mediated positive inotropic effect was 50%
lower in cardiomyopathic than in normal hamsters. With
the progression of cardiomyopathy, β -adrenoceptor
gradually disappear, whereas α_1 -adrenoceptor density lower in cardiomyop
the progression of
gradually disappear
mains high, even w
giya et al., 1991a).
An increase in tl e progression of cardiomyopathy, β -adrenoceptors
adually disappear, whereas α_1 -adrenoceptor density re-
ains high, even when heart failure develops fully (Ka-
ya et al., 1991a).
An increase in the α_1 -adrenocept

gradually disappear, whereas α_1 -adrenoceptor density remains high, even when heart failure develops fully (Ka-
giya et al., 1991a).
An increase in the α_1 -adrenoceptor density was also
observed in cardiac hypoxia (mains high, even when heart failure develops fully (Ka-
giya et al., 1991a).
An increase in the α_1 -adrenoceptor density was also
observed in cardiac hypoxia (Heathers et al., 1988; Ka-
giya et al., 1991b). An explanat giya et al., 1991a).

An increase in the α_1 -adrenoceptor density was also

observed in cardiac hypoxia (Heathers et al., 1988; Ka-

giya et al., 1991b). An explanation for this increase is

not yet forthcoming. This c An increase in the α_1 -adrenoceptor density was also
observed in cardiac hypoxia (Heathers et al., 1988; Ka-
giya et al., 1991b). An explanation for this increase is
not yet forthcoming. This change in density could be observed in cardiac hypoxia (Heathers et al., 1988; Ka-
giya et al., 1991b). An explanation for this increase is not yet forthcoming. This change in density could be explained by the incorporation in the sarcolemma of newly synthesized receptors or, as previously suggested, by an unmasking of covert receptors following the modificati not yet forthcoming. This change in density could be explained by the incorporation in the sarcolemma of newly synthesized receptors or, as previously suggested by an unmasking of covert receptors following the modificatio newly synthesized receptors or, as previously suggested, by an unmasking of covert receptors following the mod-

were bathed in 1.2 mM Ca²⁺. This effect was not further In hypertensive animals, both the number of cardiac observed when external Ca²⁺ was elevated to 2.5 mM. β -adrenoceptors and the positive inotropic effect of by an unmasking of covert receptors following the modification of membrane fluidity (Heathers et al., 1988).
In hypertensive animals, both the number of cardiac β -adrenoceptors and the positive inotropic effect of β ification of membrane fluidity (Heathers et al., 1988).
In hypertensive animals, both the number of cardiac β -adrenoceptors and the positive inotropic effect of β -adrenergic agonists are reduced (Böhm et al., 1988a) In hypertensive animals, both the number of cardiac β -adrenoceptors and the positive inotropic effect of β -adrenergic agonists are reduced (Böhm et al., 1988a). The positive inotropic effect of phenylephrine appears p-autenoceptors and the positive inotropic effect of p-
adrenergic agonists are reduced (Böhm et al., 1988a).
The positive inotropic effect of phenylephrine appears
not to differ between normotensive and hypertensive
anim The positive inotropic effect of phenylephrine appears
not to differ between normotensive and hypertensive
animals (Fujiwara et al., 1972). Also, the total cardiac
content of α_1 -adrenoceptors is similar in hypertensiv not to differ between normotensive and hypertensive
animals (Fujiwara et al., 1972). Also, the total cardiac
content of α_1 -adrenoceptors is similar in hypertensive
and normotensive animals (Limas and Limas, 1987).
How content of α_1 -adrenoceptors is similar in hypertensive
and normotensive animals (Limas and Limas, 1987).
However, the distribution of α_1 -adrenoceptors is higher
in the sarcolemma and lower in the cytosolic vesicul content of α_1 -adrenoceptors is similar in hypertensive
and normotensive animals (Limas and Limas, 1987).
However, the distribution of α_1 -adrenoceptors is higher
in the sarcolemma and lower in the cytosolic vesicul and normotensive animals (Limas and Limas, 1987).
However, the distribution of α_1 -adrenoceptors is higher
in the sarcolemma and lower in the cytosolic vesicular
fraction of the myocardium obtained from hypertensive
an However, the distribution of α_1 -adrenoceptors is highe
in the sarcolemma and lower in the cytosolic vesicula
fraction of the myocardium obtained from hypertensive
animals when compared with normotensive controls (Li
m in the sarcolemma and lower in the cytosolic vesic
fraction of the myocardium obtained from hyperten
animals when compared with normotensive controls
mas and Limas, 1987). Therefore, the α/β ratio of p
malemmal cardiac animals when compared with normotensive controls (Limas and Limas, 1987). Therefore, the α/β ratio of plasanimals when compared with normoten
mas and Limas, 1987). Therefore, the
malemmal cardiac adrenoceptors is chas
sive animals, with the α_1 -adrenocepto
coming more important in hypertension
The effect of dietary fish oi as and Limas, 1987). Therefore, the α/β ratio of plas-
alemmal cardiac adrenoceptors is changed in hyperten-
ve animals, with the α_1 -adrenoceptor component be-
ming more important in hypertension.
The effect of die

malemmal cardiac adrenoceptors is changed in hypertensive animals, with the α_1 -adrenoceptor component becoming more important in hypertension.
The effect of dietary fish oil on cardiac function and responsiveness to a sive animals, with the α_1 -adrenoceptor component be-
coming more important in hypertension.
The effect of dietary fish oil on cardiac function and
responsiveness to adrenoceptor agonists has been studies
in perfused r The enect of dietary hish on on cardiac runction and
responsiveness to adrenoceptor agonists has been studies
in perfused rat hearts. The inotropic response to α -
agonists is reduced following a 4-week diet containing
 agonists is reduced following a 4-week diet containing 5% menhaden oil, whereas the cardiac responsiveness to β -adrenoceptor agonists is not affected by dietary fish oil (Reibel et al., 1988).

CAL REVIEW ARMACOLOGI

spet $\overline{\mathbb{O}}$

CARDIAC α_1 -ADRENOCEPTORS
In hypothyroidism the inotropic response to α_1 -adre- of inositol ph
nergic stimulation is increased (Nakashima et al., 1971; myofibrillar r CARDIAC α_1 -ADRENC

In hypothyroidism the inotropic response to α_1 -adre- of in-

nergic stimulation is increased (Nakashima et al., 1971; myc

Kunos et al., 1974; reviewed by Osnes et al., 1985). In

the hypothyroi In hypothyroidism the inotropic response to α_1 -adre-
nergic stimulation is increased (Nakashima et al., 1971
Kunos et al., 1974; reviewed by Osnes et al., 1985). In
the hypothyroid state the number of α_1 -adrenocep In hypothyronusm the motropic response to a_1 -adre-
nergic stimulation is increased (Nakashima et al., 1971;
Kunos et al., 1974; reviewed by Osnes et al., 1985). In
the hypothyroid state the number of α_1 -adrenceptor Kunos et al., 1974; reviewed by Osnes et al., 1985). In
the hypothyroid state the number of α_1 -adrenoceptor
has been reported to be unchanged (Williams and Lef
kowitz, 1979) or even reduced (Groß and Lues, 1985)
Thyro the mypothyroid state the humber of α_1 -adrenocepticals been reported to be unchanged (Williams and L
kowitz, 1979) or even reduced (Groß and Lues, 198
Thyroid hormones modulate isozyme transition of my
sin in the mamm has been reported to be unchanged (Williams and Lef-
kowitz, 1979) or even reduced (Groß and Lues, 1985). the
Thyroid hormones modulate isozyme transition of myo-
sin in the mammalian ventricular myocardium (Wine-
congrad kowitz, 1979) or even reduced (Groß and Lues, 1985).
Thyroid hormones modulate isozyme transition of myo-
sin in the mammalian ventricular myocardium (Wine-
grad, 1984). Hypothyroidism causes a transition to the
V3 isozym I hyrota normones modulate isozyme transition of myo-

sin in the mammalian ventricular myocardium (Wine-

grad, 1984). Hypothyroidism causes a transition to the

V3 isozyme, which responds to α - but not to β -adrene V3 isozyme, which responds to α - but not to β -adrenergic
stimulation (Endoh, 1986). In addition, the transition
from the V1 to the V3 myosin isoform leads to a decrease
in the maximal actomyosin ATPase activity.
Exp vs isozyme, which responds to α - but not to p-adrenergic in
stimulation (Endoh, 1986). In addition, the transition
from the V1 to the V3 myosin isoform leads to a decrease
in the maximal actomyosin ATPase activity.
Exp

From the V1 to the V5 myoshi isolorm leads to a decrease volume in the maximal actomyosin ATPase activity.

Experimentally induced diabetes mellitus is also char-

acterized by an increased inotropic responsiveness of the Experimentally induced diabetes mellitus is also char-
acterized by an increased inotropic responsiveness of this
olated cardiac muscle or whole working hearts to α_1 -
podernoceptor agonists (Downing et al., 1983; Cang acterized by an increased inotropic responsiveness of the isolated cardiac muscle or whole working hearts to α_1 -
adrenoceptor agonists (Downing et al., 1983; Canga and I_{to} , Sterin-Borda, 1986; Heijnis and van Zw isolated cardiac muscle or whole working hearts to α_1 -
adrenoceptor agonists (Downing et al., 1983; Canga and I_u
Sterin-Borda, 1986; Heijnis and van Zwieten, 1992). The po
dose response to α_1 -adrenoceptor agonis adrenoceptor agomsts (Downing et al., 1983, Canga and
Sterin-Borda, 1986; Heijnis and van Zwieten, 1992). The
dose response to α_1 -adrenoceptor agonists shows both a
leftward and an upward shift in diabetic animals. Bi dose response to α_1 -adrenoceptor agonists shows both a (leftward and an upward shift in diabetic animals. Binding fitulies reveal a reduced number of α_1 -adrenoceptor-binding sites associated with no change (Tanaka leftward and an upward shift in diabetic animals. Binding festudies reveal a reduced number of α_1 -adrenoceptor-
binding sites associated with no change (Tanaka et al., ag
1992) or an increase in their affinity constan studies reveal a reduced number of α_1 -adrenoceptor-
binding sites associated with no change (Tanaka et al., agor
1992) or an increase in their affinity constants (Wald et et a
al., 1988). The decrease in cell surface binding sites associated with no change (Tanaka et al., 1992) or an increase in their affinity constants (Wald et al., 1988). The decrease in cell surface receptor density has been suggested to be linked to a high cardiac 1992). *3. 1988*). The decrease in cell surface receptor density due to a high cardiac PKC nuity, also observed in diabetic models (Tanaka et al., s 92).
3. Proposed mechanisms of the α_1 -adrenergic positive illustropic effec

activity, also observed in diabetic models (Tanaka et al., such 1992).

3. Proposed mechanisms of the α_1 -adrenergic positive ille-

inotropic effect. Do α_1 -adrenoceptor agonists belong to a

traditional positive i 1992).
3. Proposed mechanisms of the α_1 -adrenergic positive
inotropic effect. Do α_1 -adrenoceptor agonists belong to a
traditional positive inotropic group of agents? They do
not (Pucéat et al., 1992). They differ 3. Proposed mechanisms of the α_1 -darenergic positive
inotropic effect. Do α_1 -adrenoceptor agonists belong to a
traditional positive inotropic group of agents? They do
not (Pucéat et al., 1992). They differ from $\$ *inotropic effect*. Do α_1 -adrenoceptor agonists belong to a traditional positive inotropic group of agents? They do not (Pucéat et al., 1992). They differ from β -adrenoceptor agonists, phosphodiesterase inhibitors, Fraditional positive inotropic group of agents: They do
not (Pucéat et al., 1992). They differ from β -adrenoceptor
agonists, glucagon, and other positive inotropic agents that
increase contractile force by elevating cA hot (Puceat et al., 1992). They unfer from p-autenoceptor
agonists, phosphodiesterase inhibitors, H_2 -histamine ag-
onists, glucagon, and other positive inotropic agents that
increase contractile force by elevating cAMP agonists, phosphodesterase inhibitors, 112 -installine agonists, glucagon, and other positive inotropic agents that
increase contractile force by elevating cAMP levels. Unlike dihydropyridine agonists (e.g., Bay K 8644), binists, glucagon, and other positive inotropic agents that
increase contractile force by elevating cAMP levels. Un-
like dihydropyridine agonists (e.g., Bay K 8644), α_1 -
adrenoceptor agonists do not directly activate mechanism with cardiotonic glycosides because they do
not inhibit Na⁺/K⁺ pumping. Several mechanisms have
been proposed to participate in the positive inotropic
mechanism with cardiotonic glycosides because they do
th adrenoceptor agonists do not directly activate ic_a . Also,
 α_1 -adrenoceptor agonists do not share the inotropic

mechanism with cardiotonic glycosides because they do

not inhibit Na⁺/K⁺ pumping. Several mechanism α_1 -adrenoceptor agonists do not share the inotropic
mechanism with cardiotonic glycosides because they do
not inhibit Na⁺/K⁺ pumping. Several mechanisms have
these proposed to participate in the positive inotropic mechanism with cardiotonic givessides because they do
not incredirect of α_1 -adrenoceptor agonists,
been proposed to participate in the positive inotropic
effect of α_1 -adrenoceptor agonists (fig. 1). Currently,
thr indirect increase in I_{Ca} inward current, (*b*) a stimulation
 a_t -adrenoceptor stimulation

FIG. 1. Proposed mechanisms underlying the positive inotropic action of α_1 -adrenoceptor agonists.

ENOCEPTORS 159
of inositol phosphate turnover, and *(c)* an increase in
myofibrillar responsiveness to Ca^{2+} .

has been suggested to be linked to a high cardiac PKC noceptor agonists on an increase in Ca²⁺ influx. However, activity, also observed in diabetic models (Tanaka et al., such an explanation should be viewed with cautio ENOCEPTORS

of inositol phosphate turnover, and (c) an increase

myofibrillar responsiveness to Ca²⁺.

a. EVIDENCE FOR AND AGAINST A CAUSAL RELATI
SHIP BETWEEN α_1 -ADRENERGIC EFFECTS ON THE ACT of inositol phosphate turnover, and (c) an increase in
myofibrillar responsiveness to Ca^{2+} .
a. EVIDENCE FOR AND AGAINST A CAUSAL RELATION-
SHIP BETWEEN α_1 -ADRENERGIC EFFECTS ON THE ACTION
POTENTIAL AND POSITIVE IN myofibrillar responsiveness to Ca^{2+} .
a. EVIDENCE FOR AND AGAINST A CAUSAL RELATION-
SHIP BETWEEN α_1 -ADRENERGIC EFFECTS ON THE ACTION
POTENTIAL AND POSITIVE INOTROPIC EFFECT. Because
there is a known relationship be a. EVIDENCE FOR AND AGAINST A CAUSAL RELATION-
SHIP BETWEEN α_1 -ADRENERGIC EFFECTS ON THE ACTION
POTENTIAL AND POSITIVE INOTROPIC EFFECT. Because
there is a known relationship between the duration of
action potentials a. EVIDENCE FOR AND AGAINST A CAUSAL RELATION-
SHIP BETWEEN α_1 -ADRENERGIC EFFECTS ON THE ACTION
POTENTIAL AND POSITIVE INOTROPIC EFFECT. Because
there is a known relationship between the duration of
action potentials SHIP BETWEEN α_1 -ADRENERGIC EFFECTS ON THE ACTION POTENTIAL AND POSITIVE INOTROPIC EFFECT. Becausthere is a known relationship between the duration action potentials and contractile force, it is natural consider that t POTENTIAL AND POSITIVE INOTROPIC EFFECT. Because
there is a known relationship between the duration of
action potentials and contractile force, it is natural to
consider that the two are related when the action poten-
tia there is a known relationship between the duration of action potentials and contractile force, it is natural to consider that the two are related when the action potential is prolonged by α_1 -adrenoceptor agonists. A p action potentials and contractile force, it is natural to consider that the two are related when the action potential is prolonged by α_1 -adrenoceptor agonists. A prolonged action potential due to the inhibition of $I_{$ consider that the two are related when the action potential is prolonged by α_1 -adrenoceptor agonists. A prolonged action potential due to the inhibition of I_{to} by α_1 -adrenoceptor agonists will increase Ca^{2+ tial is prolonged by α_1 -adrenoceptor agonists. A pro-
longed action potential due to the inhibition of I_{to} by α_1 -
adrenoceptor agonists will increase Ca^{2+} influx through
voltage-dependent Ca^{2+} channels (F longed action potential due to the inhibition of I_{to} by α_1 -
adrenoceptor agonists will increase Ca^{2+} influx through
voltage-dependent Ca^{2+} channels (Fedida et al., 1989).
Because of the properties of I_{to} , adrenoceptor agonists will increase Ca^{2+} influx throus voltage-dependent Ca^{2+} channels (Fedida et al., 1988)
Because of the properties of I_{ω} , such a mechanism couprovide an explanation for the frequency depende voltage-dependent Ca²⁺ channels (Fedida et al., 1989).
Because of the properties of I_{ω} , such a mechanism could
provide an explanation for the frequency dependency of
the positive inotropic effect of α_1 -agonists Because of the properties of I_{ω} , such a mechanism could
the positive inotropic effect of α_1 -agonists. Indeed, pres-
posure of cardiac cells to 4-aminopyridine, a blocker of
posure of cardiac cells to 4-aminopyrid provide an explanation for the frequency dependency of
the positive inotropic effect of α_1 -agonists. Indeed, preex-
positive inotropic effect (Tohse et al., 1990). In addition,
Ca²⁺ channel antagonists (verapamil, d posure of cardiac cells to 4-aminopyridine, a blocker of I_{to} , appears to prevent α_1 -agonists from producing a positive inotropic effect (Tohse et al., 1990). In addition, Ca^{2+} channel antagonists (verapamil, I_{to} , appears to prevent α_1 -agonists from producing positive inotropic effect (Tohse et al., 1990). In addition Ca²⁺ channel antagonists (verapamil, diltiazem, and nifedipine) have been shown to block, at least Ca^{2+} channel antagonists (verapamil, diltiazem, and nifedipine) have been shown to block, at least to some extent, the positive inotropic effect of α_1 -adrenoceptor agonists (Tohse et al., 1987a; Kushida et al., 199 Ca²⁺ channel antagonists (verapamil, diltiazem, and nifedipine) have been shown to block, at least to some extent, the positive inotropic effect of α_1 -adrenoceptor agonists (Tohse et al., 1987a; Kushida et al., 1990 fedipine) have been shown to block, at least to so
extent, the positive inotropic effect of α_1 -adrenocep
agonists (Tohse et al., 1987a; Kushida et al., 1990; Enc
et al., 1991). These findings could be explained by
dep extent, the positive inotropic effect of α_1 -adrenoceptor agonists (Tohse et al., 1987a; Kushida et al., 1990; Endou et al., 1991). These findings could be explained by a dependency of the positive inotropic effect of such also inside the anti-
such an explained by a dependency of the positive inotropic effect of α_1 -adre-
noceptor agonists on an increase in Ca²⁺ influx. However,
such an explanation should be viewed with caution b dependency of the positive inotropic effect of α_1 -a
noceptor agonists on an increase in Ca²⁺ influx. Howe
such an explanation should be viewed with caution
cause Ca²⁺ channel blockers also decrease basal contr
ile moceptor agonists on an increase in Ca^{2+} influx. However, moceptor agonists on an increase in Ca^{2+} influx. However, where Ca^{2+} channel blockers also decrease basal condie force and exhibit an affinity for cardiac moceptor agons is on an increase in Ca
such an explanation should be viewed w
cause Ca^{2+} channel blockers also decrease
ile force and exhibit an affinity for cardia
tor-binding sites (Kushida et al., 1990).
Recently, En an explanation should be viewed with caltion be-
use Ca^{2+} channel blockers also decrease basal contract-
force and exhibit an affinity for cardiac α_1 -adrenocep-
r-binding sites (Kushida et al., 1990).
Recently,

cause can exhibit an affinity for cardiac α_1 -adrenoceptor-binding sites (Kushida et al., 1990).
Recently, Fedida and Bouchard (1992), using the whole
cell voltage clamp technique to control the duration of
depolarizat ile force and exhibit an affinity for cardiac α_1 -adrenoceptor-binding sites (Kushida et al., 1990).
Recently, Fedida and Bouchard (1992), using the whole
cell voltage clamp technique to control the duration of
depolar tor-binding sites (Kushida et al., 1990).
Recently, Fedida and Bouchard (1992), using the whole
cell voltage clamp technique to control the duration of
depolarization, provided evidence that, at least under the
experiment Recently, Fedida and Bouchard (1992), using the whole
cell voltage clamp technique to control the duration of
depolarization, provided evidence that, at least under the
experimental conditions used, the increase in contra cell voltage clamp technique to control the duration of depolarization, provided evidence that, at least under the experimental conditions used, the increase in contractile force produced by α_1 -agonists can be observe repolarization, provided evidence that, at least didently
experimental conditions used, the increase in contractor
force produced by α_1 -agonists can be observed only with
the action potential duration is increased. Al Experimental conductions used, the increase in contractive
force produced by α_1 -agonists can be observed only when
the action potential duration is increased. Although the
results of these experiments point out that t the action potential duration is increased. Although the
results of these experiments point out that the prolon-
gation of the action potential plays an important role in
the positive inotropic effect of α_1 -adrenocept mesures of these experiments point out that the proformation of the action potential plays an important role in the positive inotropic effect of α_1 -adrenoceptor agonists, they do not necessarily mean that additional i gation of the action potential plays an important role if
the positive inotropic effect of α_1 -adrenoceptor agonists
they do not necessarily mean that additional inotropi
mechanisms do not also participate in the inotr the positive inotropic effect of α_1 -adrehoceptor agonists,
they do not necessarily mean that additional inotropic
mechanisms do not also participate in the inotropic
action of α_1 -agonists. A potential limitation o mechanisms do not also participate in the motropic
action of α_1 -agonists. A potential limitation of the tech-
nique used could have been that the internal dialysis of
myocytes through the patch pipette may have preven nique used could have been that the internal dialysis of
myocytes through the patch pipette may have prevented
the mechanisms leading to myofibrillar sensitization to
Ca²⁺ to take place.
Several reports suggest that the myocytes through the patch pipette may have prevented

of K^rcurrents

in normally polarized myocardial preparations exposed

to Mn²⁺, which causes a suppression of the slow inward

PROLONGATION

THE ACTION POTENTIAL of the action potential duration without an increase in the mechanisms leading to myofibrillar sensitization to Ca^{2+} to take place.
Several reports suggest that the electrophysiological effects caused by α_1 -adrenoceptor agonists can be disso-ciated from their positive i the mechanisms leading to myofibrillar sensitization to Ca^{2+} to take place.
Several reports suggest that the electrophysiological
effects caused by α_1 -adrenoceptor agonists can be disso-
ciated from their positive Ca²⁺ to take place.
Several reports suggest that the electrophysiological
effects caused by α_1 -adrenoceptor agonists can be disso-
ciated from their positive inotropic effects. For example,
in normally polarized myo Several reports suggest that the electrophyshological
effects caused by α_1 -adrenoceptor agonists can be disso-
ciated from their positive inotropic effects. For example,
in normally polarized myocardial preparations e effects caused by a_1 -autenoceptor agonists can be usso-
ciated from their positive inotropic effects. For example,
in normally polarized myocardial preparations exposed
to Mn^{2+} , which causes a suppression of the sl clated from their positive inotropic effects. For example,
in normally polarized myocardial preparations exposed
to Mn^{2+} , which causes a suppression of the slow inward
current, phenylephrine produced a marked prolonga In normany polarized injocardial preparations exposed
to Mn^{2+} , which causes a suppression of the slow inward
current, phenylephrine produced a marked prolongation
of the action potential duration without an increase i current, phenylephrine produced a marked prolongation
of the action potential duration without an increase in
contractile force (Handa et al., 1982). In addition, for
concentrations of α_1 - and β -adrenoceptor agonis of the action potential duration without an increase in
contractile force (Handa et al., 1982). In addition, for
concentrations of α_1 - and β -adrenoceptor agonists that
produce the same magnitude of positive inotrop

160 TERZIC ET

the maximum rate of depolarization of slow action po-

tentials as compared to β -adrenoceptor agonists (Brück-160 TEI
the maximum rate of depolarization of slow action
tentials as compared to β -adrenoceptor agonists (Brück-
ner and Scholz, 1984). Furthermore, for a given depol 160
the maximum rate of depolarization of slow action
tentials as compared to β -adrenoceptor agonists (Brü
ner and Scholz, 1984). Furthermore, for a given depol
izing pulse (i.e., under voltage clamp conditions), at le the maximum rate of depolarization of slow action potentials as compared to β -adrenoceptor agonists (Brückner and Scholz, 1984). Furthermore, for a given depolarizing pulse (i.e., under voltage clamp conditions), at le the maximum rate of depolarization of slow action po-
tentials as compared to β -adrenoceptor agonists (Brück-
ner and Scholz, 1984). Furthermore, for a given depolar-
izing pulse (i.e., under voltage clamp conditions), tentials as compared to β -adrenoceptor agonists (Brück-nitr ner and Scholz, 1984). Furthermore, for a given depolar-hibitizing pulse (i.e., under voltage clamp conditions), at least agon in feline cardiac cells, α_1 ner and Scholz, 1984). Furthermore, for a given depolar-
izing pulse (i.e., under voltage clamp conditions), at least
in feline cardiac cells, α_1 -adrenoceptor stimulation pro-
duces an increase in contractile force wi izing pulse (i.e., under voltage clamp conditions), at limit feline cardiac cells, α_1 -adrenoceptor stimulation duces an increase in contractile force with no increas Ca^{2+} current (Hartmann et al., 1988). Dirksen et in feline cardiac cells, α_1 -adrenoceptor stimulation produces an increase in contractile force with no increase in Ca²⁺ current (Hartmann et al., 1988). Dirksen et al. (1991) reported that, in guinea pig ventricle, duces an increase in contractile force with no increase in Ca²⁺ current (Hartmann et al., 1988). Dirksen et al. (1991) reported that, in guinea pig ventricle, α_1 -adrenoceptor stimulation produces a positive inotropi Ca²⁺ current (Hartmann et al., 1988). Dirksen et al. C. (1991) reported that, in guinea pig ventricle, α_1 -adreno-
ceptor stimulation produces a positive inotropic effect pro
even when the Ca²⁺ transient and the ac (1991) reported that, in guinea pig ventricle, α_1 -adreno-
ceptor stimulation produces a positive inotropic effect
even when the Ca²⁺ transient and the action potential
duration are decreased. Similarly, in rat cardi ceptor stimulation produces a positive inotropic effect peven when the Ca^{2+} transient and the action potential the duration are decreased. Similarly, in rat cardiac cells, a spositive inotropic effect of phenylephrine positive inotropic effect of phenylephrine can be ob-
served, at least in some cells, in the absence of an increase
in intracellular Ca²⁺ (Gambassi et al., 1992). It might be
margued on these grounds that the prolongati served, at least in some cells, in the absence of an increase
in intracellular Ca²⁺ (Gambassi et al., 1992). It might be
argued on these grounds that the prolongation of the
action potential might participate, but is no in intracellular (argued on these
action potential
origin, of the α_1
diac contractility
b. IS THERE tion potential might participate, but is not the sole higin, of the α_1 -adrenoceptor-mediated increase in car-
ac contractility.
b. IS THERE A CAUSAL RELATIONSHIP BETWEEN α_1 - am
RENOCEPTOR-MEDIATED STIMULATION OF T

BREAKDOWN OF PHOSPHATIDYL INOSITOLS AND CONdiac contractility. $\begin{array}{ll}\n\text{c}}\n\text{c}\n\text{d}\$ b. IS THERE A CAUSAL RELATIONSHIP BETWEEN α_1 -
ADRENOCEPTOR-MEDIATED STIMULATION OF THE
BREAKDOWN OF PHOSPHATIDYL INOSITOLS AND CON-
TRACTILE FORCE? As reviewed above, the stimulation of
cardiac α_1 -adrenoceptors pr ADRENOCEPTOR-MEDIATED STIMULATION OF THE CAN
BREAKDOWN OF PHOSPHATIDYL INOSITOLS AND CON-
TRACTILE FORCE? As reviewed above, the stimulation of can
cardiac α_1 -adrenoceptors promotes the breakdown of PI, card
producing **BREAKDOWN OF PHOSPHATIDYL INOSITOLS AND CON-**
TRACTILE FORCE? As reviewed above, the stimulation of ca
cardiac α_1 -adrenoceptors promotes the breakdown of PI, ca
producing IP₃ and DAG. The role of these molecules in cardiac α_1 -adrenoceptors promotes the breakdor
producing IP₃ and DAG. The role of these mol
the excitation-contraction process in heart m
well as in mediating the positive inotropic effe
adrenoceptor agonists, is no oducing IP₃ and DAG. The role of these molecules in and
e excitation-contraction process in heart muscle, as (198
ell as in mediating the positive inotropic effect of α_1 - to 5
renoceptor agonists, is not yet fully c

the excitation-contraction process in heart muscle, as (19)
well as in mediating the positive inotropic effect of α_1 -
adrenoceptor agonists, is not yet fully clarified. Under
A prerequisite for a second-messenger role well as in mediating the positive inotropic effect of α_1 -
adrenoceptor agonists, is not yet fully clarified. Unlet a prerequisite for a second-messenger role of IP₃ in N₆
the α_1 -adrenoceptor-mediated inotropic adrenoceptor agonists, is not yet fully clarified.
A prerequisite for a second-messenger role of IP₃ in
the α_1 -adrenoceptor-mediated inotropic action is that the
 α_1 -adrenoceptor agonist-induced increase in IP₃ A prerequisite for a second-messenger role of IP_3 in
the α_1 -adrenoceptor-mediated inotropic action is that the
 α_1 -adrenoceptor agonist-induced increase in IP_3 should
precede the increase in the force of contra the α_1 -adrenoceptor-mediated inotropic action is that the α_1 -adrenoceptor agonist-induced increase in IP₃ should by precede the increase in the force of contraction. Indeed, the Schmitz et al. (1987b) and Scholz α_1 -adrenotepton agomst-moded increase in 11 3 should
precede the increase in the force of contraction. Indeed,
Schmitz et al. (1987b) and Scholz et al. (1988) found that
the positive inotropic effect of phenylephrine precede the increase in the force of contraction. Indeed, the Schmitz et al. (1987b) and Scholz et al. (1988) found that strothe positive inotropic effect of phenylephrine in rat atria In is preceded by a decrease in $\text{$ Schmitz et al. (1987b) and Scholz et al. (1988) found that
the positive inotropic effect of phenylephrine in rat atria
is preceded by a decrease in PIP_2 and an increase in IP_3 .
Whereas the decrease in PIP_2 the positive inotropic effect of phenylephrine in rat atria Ii
is preceded by a decrease in PIP_2 and an increase in IP₃.
Whereas the decrease in PIP_2 and the increase in IP₃ w
could already be detected at 30 is preceded by a decrease in PIP_2 and an increase i
Whereas the decrease in PIP_2 and the increase is
could already be detected at 30 s, the increase in fo
contraction did not start before 1 min. In rat par
muscl could already be detected at 30 s, the increase in force of contraction did not start before 1 min. In rat papillary muscles, Otani et al. (1988) showed that concentration-response curves for α_1 -adrenoceptor-mediated sitol phosphate formation and inotropic responses were being in accordance with the view that concentration-
sitol phosphate formation and inotropic responses were being in accordance with the view that the breakdown in
o muscles, Otani et al. (1988) showed that concentration-
response curves for α_1 -adrenoceptor-mediated [³H]ino-
sitol phosphate formation and inotropic responses were by
similar. In accordance with the view that the b response curves for α_1 -adrenoceptor-mediated [³H]ino-
sitol phosphate formation and inotropic responses were by
similar. In accordance with the view that the breakdown in
of PI may be involved in the positive inotro sitol phosphate formation and inotropic responses were
similar. In accordance with the view that the breakdown
of PI may be involved in the positive inotropic effect of
 α_1 -agonists is the finding that lithium, an inhi inder. In accordance with the view that the breakdown
of PI may be involved in the positive inotropic effect of
 α_1 -agonists is the finding that lithium, an inhibitor of
inositol phosphate hydrolysis, potentiates the p -agonists is the finding that lithium, an inhibitor of ino
ositol phosphate hydrolysis, potentiates the positive fib
otropic effect of α_1 -adrenoceptor agonists (Molderings med
Schümann, 1987; Skomedal et al., 1991).
I inositol phosphate hydrolysis, potentiates the positive filinotropic effect of α_1 -adrenoceptor agonists (Molderings m and Schümann, 1987; Skomedal et al., 1991). to If the hydrolysis of PIP₂ is an essential link in

inotropic effect of α_1 -adrenoceptor agonists (Molderings
and Schümann, 1987; Skomedal et al., 1991).
If the hydrolysis of PIP₂ is an essential link in the
pharmacomechanical coupling that follows the binding
of the and Schümann, 1987; Skomedal et al., 1991).

If the hydrolysis of PIP₂ is an essential link in the

pharmacomechanical coupling that follows the binding

of the agonist to cardiac α_1 -adrenoceptors, then the in-

hib If the hydrolysis of $F1F_2$ is an essential fink in
pharmacomechanical coupling that follows the bind
of the agonist to cardiac α_1 -adrenoceptors, then the
hibition of PIP_2 hydrolysis should block the inotre
effe pharmacomechanical coupling that follows the binding (13
of the agonist to cardiac α_1 -adrenoceptors, then the in-
hibition of PIP₂ hydrolysis should block the inotropic trig
effect of α_1 -adrenoceptor agonists. T effect of α_1 -adrenoceptor agonists. To test this hypothe-
sis, Otani et al. (1988) exposed papillary muscles labeled for
with [³H]inositol to 0.1 mM neomycin, a blocker of PIP₂ d
degradation. Neomycin inhibited [sis, Otani et al. (1988) exposed papillary muscles labeled
with [³H]inositol to 0.1 mM neomycin, a blocker of PIP_2
degradation. Neomycin inhibited [³H]inositol phosphate
formation and diminished the inotropic eff

ST AL.
showed that another inhibitor of phospholipase C, 2-
nitro-4-carboxyphenyl-N,N diphenylcarbamate, also in-
hibits the positive inotropic effect of the α_1 -adrenoceptor ET AL.
showed that another inhibitor of phospholipase C,
nitro-4-carboxyphenyl-N,N diphenylcarbamate, also i
hibits the positive inotropic effect of the α_1 -adrenocept
agonist, methoxamine, in rat ventricular strips. H showed that another inhibitor of phospholipase C, 2 nitro-4-carboxyphenyl-N,N diphenylcarbamate, also inhibits the positive inotropic effect of the α_1 -adrenoceptoi agonist, methoxamine, in rat ventricular strips. Howe nitro-4-carboxyphenyl-N,N diphenylcarbamate, also inhibits the positive inotropic effect of the α_1 -adrenoceptor agonist, methoxamine, in rat ventricular strips. However, nitro-4-carboxyphenyl-N,N diphenylcarbamate, also inhibits the positive inotropic effect of the α_1 -adrenoceptor agonist, methoxamine, in rat ventricular strips. However, neither neomycin nor 2-nitro-4-carboxyphenyl-N, C. onist, methoxamine, in rat ventricular strips. However,
ither neomycin nor 2-nitro-4-carboxyphenyl-N,N di-
eenylcarbamate are specific inhibitors of phospholipase
In rat papillary muscle, α_1 -adrenoceptor stimulation
o phenylcarbamate are specific inhibitors of phospholipase
C.
In rat papillary muscle, α_1 -adrenoceptor stimulation

even when the Ca²⁺ transient and the action potential the specific role of the two limbs of the PI turnover (IP₃ duration are decreased. Similarly, in rat cardiac cells, a and DAG-PKC) in the α_1 -adrenoceptor-media positive inotropic effect of phenylephrine can be ob-
served, at least in some cells, in the absence of an increase
in phoglyceric acid which inhibits IP₃ degradation; this
in intracellular Ca²⁺ (Gambassi et al., 1992 origin, of the α_1 -adrenoceptor-mediated increase in car-
diac contractility.
b. IS THERE A CAUSAL RELATIONSHIP BETWEEN α_1 -
b. IS THERE A CAUSAL RELATIONSHIP BETWEEN α_1 -
adrenergic stimulation but that enhanced phenylcarbamate are specific inhibitors of phospholipase C.

In rat papillary muscle, α_1 -adrenoceptor stimulation

produces a triphasic inotropic response. To investigate

the specific role of the two limbs of the PI C.
In rat papillary muscle, α_1 -adrenoceptor stimulation
produces a triphasic inotropic response. To investiga
the specific role of the two limbs of the PI turnover (I
and DAG-PKC) in the α_1 -adrenoceptor-mediated p In rat papillary muscle, α_1 -adrenoceptor stimula
produces a triphasic inotropic response. To investit
the specific role of the two limbs of the PI turnover
and DAG-PKC) in the α_1 -adrenoceptor-mediated p
tive inotr photonces a triphasic motropic response. To investigate
the specific role of the two limbs of the PI turnover (IP₃
and DAG-PKC) in the α_1 -adrenoceptor-mediated posi-
tive inotropic effect, Otani et al. (1988) used 2 the specific role of the two films of the F1 turnover (IF₃ and DAG-PKC) in the α_1 -adrenoceptor-mediated positive inotropic effect, Otani et al. (1988) used 2,3-diphos-phoglyceric acid which inhibits IP₃ degradatio tive inotropic effect, Otani et al. (1988) used 2,3-diphostive inotropic effect, Otani et al. (1988) used 2,3-diphos-
phoglyceric acid which inhibits IP_3 degradation; this
molecule potentiated the α_1 -adrenergic mediated initial
phases (the transient positive and negative p phoglyceric acid which inhibits if $_3$ degradation, this
molecule potentiated the α_1 -adrenergic mediated initial
phases (the transient positive and negative phases) but
had no effect on the sustained positive inotrop molecule potentiated the α_1 -adrenergic mediated initial
phases (the transient positive and negative phases) but
had no effect on the sustained positive inotropic re-
sponse. These authors concluded that PIP_2 degr phases (the transient positive and negative phases) but
had no effect on the sustained positive inotropic re-
sponse. These authors concluded that PIP_2 degradation
could play a role in the early inotropic response to onse. These authors concluded that PIP_2 degradation
uld play a role in the early inotropic response to α_1 -
renergic stimulation but that enhanced IP₃ formation
mot explain the sustained positive inotropic respo

cardiac α_1 -adrenoceptors promotes the breakdown of PI, cardiac muscle cells. Studying saponin-skinned myocytes
producing IP₃ and DAG. The role of these molecules in and isolated sarcoplasmic reticulum, Movsesian et effect of α_1 -adrenoceptor agonists. To test this hypothe-
sis, Otani et al. (1988) exposed papillary muscles labeled following the flash impulse. However, the magnitude of
with [³H]inositol to 0.1 mM neomycin, a blo There is some controversy as to whether or not IP_3 could play a role in the early inotropic response to α_1 -
adrenergic stimulation but that enhanced IP₃ formation
cannot explain the sustained positive inotropic response.
There is some controversy as to whether or no adrenergic stimulation but that enhanced IP₃ formation
cannot explain the sustained positive inotropic response.
There is some controversy as to whether or not IP₃
can release Ca^{2+} from the sarcoplasmic reticulum o cannot explain the sustained positive inotropic response.
There is some controversy as to whether or not IP_3
can release Ca^{2+} from the sarcoplasmic reticulum of
cardiac muscle cells. Studying saponin-skinned myocytes There is some controversy as ω whether or not II 3
can release Ca²⁺ from the sarcoplasmic reticulum of
cardiac muscle cells. Studying saponin-skinned myocytes
and isolated sarcoplasmic reticulum, Movsesian et al.
(19 cardiac muscle cells. Studying saponin-skinned myocytes
and isolated sarcoplasmic reticulum, Movsesian et al.
(1986) found no evidence that IP₃ (at concentrations up
to 50 μ M) can release Ca²⁺ from the sarcoplasmic (1986) found no evidence that IP_3 (at concentrations up
to 50 μ M) can release Ca^{2+} from the sarcoplasmic retic-
ulum. In saponin-skinned guinea pig papillary muscles,
Nosek et al. (1986) demonstrated that Ca^{2+} -(1580) found no evidence that If 3 (at concentrations up
to 50 μ M) can release Ca^{2+} from the sarcoplasmic retic
ulum. In saponin-skinned guinea pig papillary muscles
Nosek et al. (1986) demonstrated that Ca^{2+} -ind ulum. In saponin-skinned guinea pig papillary muscles,
Nosek et al. (1986) demonstrated that Ca^{2+} -induced force
oscillations are enhanced, in magnitude and frequency,
by IP₃ at concentrations as low as 1 μ M. IP₃ the magnitude of caffeine contractures,
Nosek et al. (1986) demonstrated that Ca^{2+} -induced force
oscillations are enhanced, in magnitude and frequency,
by IP₃ at concentrations as low as 1μ M. IP₃ also increased
 strose
a et al. (1500) demonstrated that Ca²-induced force
oscillations are enhanced, in magnitude and frequency
by IP₃ at concentrations as low as 1μ M. IP₃ also increase
the magnitude of caffeine contractures, c by IP₃ at concentrations as low as 1μ M. IP₃ also increased
the magnitude of caffeine contractures, caffeine being a
strong releaser of Ca²⁺ from the sarcoplasmic reticulum.
In mechanically skinned cardiac cells, by II 3 at concentrations as tow as 1 μ m. II 3 also increased
the magnitude of caffeine contractures, caffeine being a
strong releaser of Ca²⁺ from the sarcoplasmic reticulum.
In mechanically skinned cardiac cells, F the magnitude of caffeine contractures, caffeine being a strong releaser of Ca^{2+} from the sarcoplasmic reticulum.
In mechanically skinned cardiac cells, Fabiato (1986) showed that $1,4,5$ -IP₃ induces a slow release o strong releaser of Ca²⁺ from the sarcoplasmic reticulum.
In mechanically skinned cardiac cells, Fabiato (1986)
showed that 1,4,5-IP₃ induces a slow release of Ca²⁺
which causes a tension transient. This tension tran In mechanically skinned cardiac cells, Fabiato (1986)
showed that $1,4,5$ -IP₃ induces a slow release of Ca²⁺
which causes a tension transient. This tension transient
increased from 3 to 15% of maximum tension when the showed that 1,4,5-IP₃ induces a slow release of Ca
which causes a tension transient. This tension transient
increased from 3 to 15% of maximum tension when the
concentration of 1,4,5-IP₃ was increased from 2 to 30 μ increased from 3 to 13% of maximum tension when the
concentration of $1,4,5$ -IP₃ was increased from 2 to 30 μ M.
This author suggested that $1,4,5$ -IP₃-induced release of
Ca²⁺ may play a role in the modulation of concentration of 1,4,5-1F₃ was increased from 2 to 3d.
This author suggested that $1,4,5$ -IF₃-induced releas
Ca²⁺ may play a role in the modulation of Ca²⁺ rel
by hormones or pharmacological agents. Recently, ina-This author suggested that $1,4,5$ -IP₃-induced release Ca²⁺ may play a role in the modulation of Ca²⁺ relea
by hormones or pharmacological agents. Recently, Mc
ina-Viamonte et al. (1990) explored whether phospholo
p Ca^{2+} may play a role in the modulation of Ca^{2+} release
by hormones or pharmacological agents. Recently, Mol-
ina-Viamonte et al. (1990) explored whether phospholi-
pase C (0.05 units/ml), when applied extracellularl by normones or pharmacological agents. Recentry, Mol-
ina-Viamonte et al. (1990) explored whether phospholi-
pase C (0.05 units/ml), when applied extracellularly,
increased Ca²⁺ transients in isolated, paced Purkinje
fi pase C (0.05 units/ml), when applied extracellularly,
increased Ca^{2+} transients in isolated, paced Purkinje
fibers. Extracellularly applied phospholipase C aug-
mented intracellular IP₃, suggesting a relationship beincreased Ca transients in isolated, paced rurking
fibers. Extracellularly applied phospholipase C aug-
mented intracellular IP₃, suggesting a relationship be-
tween IP₃ generation and the size of the intracellular
Ca meers. Extracentuarly applied phosphonpase \sim augmented intracellular IP₃, suggesting a relationship be-
tween IP₃ generation and the size of the intracellular
Ca²⁺ transient in intact cardiac tissue. Kentish et a tween IP₃ generation and the size of the intracellular Ca^{2+} transient in intact cardiac tissue. Kentish et al. (1990) using the caged compound technique showed that photorelease of IP₃ in rat cardiac ventricular tr tween IP₃ generation and the size of the intracellula Ca^{2+} transient in intact cardiac tissue. Kentish et a (1990) using the caged compound technique showed the photorelease of IP₃ in rat cardiac ventricular trabec Ca^{2+} transient in intact cardiac tissue. Kentish et al. (1990) using the caged compound technique showed that photorelease of IP_3 in rat cardiac ventricular trabeculae triggers the release of Ca^{2+} from the sarcopl (1990) using the caged compound technique showed that
photorelease of IP_3 in rat cardiac ventricular trabeculae
triggers the release of Ca^{2+} from the sarcoplasmic retic-
ulum as indicated by the tension developed by photorelease of IP₃ in rat cardiac ventricular trabeculae
triggers the release of Ca^{2+} from the sarcoplasmic retic-
ulum as indicated by the tension developed by the muscle
following the flash impulse. However, the m ulum as indicated by the tension developed by the muscle
following the flash impulse. However, the magnitude of
developed tension was much smaller than that developed
in response to flashes that trigger Ca^{2+} -induced Ca ulum as indicated by the tension developed by the muscle following the flash impulse. However, the magnitude of developed tension was much smaller than that developed in response to flashes that trigger Ca^{2+} -induced Ca following the flash impulse. However, the magnitude of developed tension was much smaller than that developed in response to flashes that trigger Ca^{2+} -induced Ca^{2+} release. It was concluded that IP_3 does not trigge

 $\begin{array}{cccc}\n\text{CARDIAC} & \alpha_1\text{-ADREN}\n\text{conclusions were drawn from saponin-skinned chick} & \text{the\n atrial muscle by Vites and Pappano (1990) who reported} & \text{size} & \text{size}$ CARDIAC α_1 -ADRE
conclusions were drawn from saponin-skinned chick the
atrial muscle by Vites and Pappano (1990) who reported site
that the tension developed in response to 20 μ M IP₃ il CARDIAC α_1 -ADRENC
conclusions were drawn from saponin-skinned chick the
atrial muscle by Vites and Pappano (1990) who reported sien
that the tension developed in response to 20 μ M IP₃ illar
(maximal effect) was h atrial muscle by Vites and Pappano (1990) who reported
that the tension developed in response to 20 μ M IP₃
(maximal effect) was half of the force amplitude recorded
in response to caffeine. Recently, Zhu and Nosek (1 atrial muscle by vies and rappano (1550) who reported
that the tension developed in response to 20 μ M IP₃ illary
(maximal effect) was half of the force amplitude recorded micro
in response to caffeine. Recently, Zhu that the tension developed in response to 20 μ M IP₃ (maximal effect) was half of the force amplitude recorded in response to caffeine. Recently, Zhu and Nosek (1991) investigated the effects of IP₃ on Ca²⁺ releas (maximal effect) was half of the force amplitude recorded mid-
in response to caffeine. Recently, Zhu and Nosek (1991) pro
investigated the effects of IP_3 on Ca^{2+} release from inc-
sarcoplasmic reticulum in skinned r in response to caffeine. Recently, Zhu and Nosek (199
investigated the effects of IP_3 on Ca^{2+} release fre
sarcoplasmic reticulum in skinned rat papillary musc
Based on the notion that Ca^{2+} -induced Ca^{2+} release mvestigated the effects of H_3^3 on Ca² release from increase same space. The sarcoplasmic reticulum shared ca²⁺ release were distinct mechanisms for Ca²⁺ release from the sarcoplasmic reticulum chanisms for Ca Based on the notion that Ca^{2+} -induced Ca^{2+} release and transpontaneous cyclic Ca^{2+} release were distinct mechanisms for Ca^{2+} release from the sarcoplasmic reticulum chifectlike change of Fa facilitates the sp spontaneous cyclic Ca^{2+} release from
(Fabiato, 1985), these aut
facilitates the spontaneous
 Ca^{2+} -induced Ca^{2+} release.
Even if IP_3 could modula sms for Ca²⁺ release from the sarcoplasmic reticului
abiato, 1985), these authors demonstrated that II
cilitates the spontaneous Ca²⁺ release rather than th
²⁺-induced Ca²⁺ release.
Even if IP₃ could modulate th

(Fabiato, 1985), these authors demonstrated that facilitates the spontaneous Ca²⁺ release rather than Ca²⁺-induced Ca²⁺ release.
Even if IP₃ could modulate the mobilization of in cellular Ca²⁺, the positive inot facilitates the spontaneous Ca^{2+} release rather than the
 Ca^{2+} -induced Ca^{2+} release.

Even if IP₃ could modulate the mobilization of intra-

cellular Ca^{2+} , the positive inotropic effect of α_1 -adreno-

ce Ca²⁺-induced Ca²⁺ release.
Even if IP₃ could modulate the mobilization of in
cellular Ca²⁺, the positive inotropic effect of α_1 -adre
ceptor agonists has been dissociated, at least in s
experimental conditions, Even if H_3 could modulate the mobilization of intra-
cellular Ca²⁺, the positive inotropic effect of α_1 -adreno-
ceptor agonists has been dissociated, at least in some
experimental conditions, from an increase in 1992; Terzic et al., 1992a). Furthermore, α_1 -adrenoceptor experimental conditions, from an increase in intracellu-
lar Ca²⁺ transients (Dirksen et al., 1991; Gambassi et al., 1992; Terzic et al., 1992a). Furthermore, α_1 -adrenoceptor
agonists are able to increase contractil lar Ca²⁺ transients (Dirksei
1992; Terzic et al., 1992a). lagonists are able to increase
levels that can be achieved
(Terzic and Vogel, 1991).
In skeletal muscle, IP₃ ca 92; Terzic et al., 1992a). Furthermore, α_1 -adrenoceptor onists are able to increase contractile force above the vels that can be achieved by stimulators of Ca²⁺ influx erzic and Vogel, 1991). In skeletal muscle, IP

sensitivity of contractions in the above the levels that can be achieved by stimulators of Ca^{2+} influ (Terzic and Vogel, 1991).
In skeletal muscle, IP₃ can modulate the apparent Ca³ sensitivity of contractile prote meyer, 1986). However, in rabbit papillary muscle, Nosek

et al. (1990). However, in rabbit papillary muscle, Nosek

et al. (1990) failed to demonstrate any effect of 30 μ M

IP₃ on the Ca²⁺ sensitivity of myofilame In skeletal muscle, IP₃ can modulate the apparent Ca²⁺
sensitivity of contractile proteins (Thieleczek and Heil-
meyer, 1986). However, in rabbit papillary muscle, Nosek
et al. (1990) failed to demonstrate any effect et al. (1990). However, in rabbit papillary muscle, Nosek
et al. (1990) failed to demonstrate any effect of 30 μ M
IP₃ on the Ca²⁺ sensitivity of myofilaments (cf. Scholz
et al., 1992a). Pucéat et al., (1990) obtain meyer, 15880). However, in rabolt papinary muscle, Nose
et al. (1990) failed to demonstrate any effect of 30 μ
IP₃ on the Ca²⁺ sensitivity of myofilaments (cf. Scho
et al., 1992a). Pucéat et al., (1990) obtained si IP₃ on the Ca²⁺ sensitivity of myofilaments (cf. Scholz
et al., 1992a). Pucéat et al., (1990) obtained similar
results in single isolated chemically skinned rat ventric-
ular cells, a model in which molecular diffusio mediate in single isolated chemically skinned rat ventricular cells, a model in which molecular diffusion is facilitated. In summary, it appears that IP_3 alone cannot mediate the sustained positive inotropic effect of tated. In summary, it appears that IP_3 alone cannot mediate the sustained positive inotropic effect of α_1 -adrenoceptor agonists. This conclusion is also supported by the observation that IP_3 is only transiently in adrenoceptor agonists. This conclusion is also supported
by the observation that IP₃ is only transiently increased
following α_1 -adrenoceptor stimulation, whereas the pos-
itive inotropic effect is sustained.
In frog renoceptor agonists. This conclusion is also supported
the observation that IP₃ is only transiently increased
llowing α_1 -adrenoceptor stimulation, whereas the pos-
ve inotropic effect is sustained.
In frog heart cel

by the observation that IP₃ is only transiently increased
following α_1 -adrenoceptor stimulation, whereas the pos-
itive inotropic effect is sustained.
In frog heart cells, the α_1 -adrenergic response occurs
witho following α_1 -adrenoceptor stimulation, whereas the positive inotropic effect is sustained.
In frog heart cells, the α_1 -adrenergic response occusition at change in the action potential overshoot a with a less prono itive inotropic effect is sustained.

In frog heart cells, the α_1 -adrenergic response occurs

without a change in the action potential overshoot and

with a less pronounced lengthening of the action poten-

tial durat with a less pronounced lengthening of the action potential duration than during the β -adrenergic action. Based
on the observation that caffeine prevents the α_1 -adre-
nergic inotropic response, Niedergerke and Page without a change in the action potential overshoot and
with a less pronounced lengthening of the action poten-
tial duration than during the β -adrenergic action. Based
on the observation that caffeine prevents the $\alpha_$ with a less pronounced lengthening of the action potential duration than during the β -adrenergic action. Based
on the observation that caffeine prevents the α_1 -adrenergic inotropic response, Niedergerke and Page (1 tial duration than during the β -adrenergic action. Based
on the observation that caffeine prevents the α_1 -adre-
nergic inotropic response, Niedergerke and Page (1989) oper
proposed that adrenoceptors facilitate $Ca^{$ on the observation that caffeine prevents the α_1 -adre-
nergic inotropic response, Niedergerke and Page (1989)
proposed that adrenoceptors facilitate Ca^{2+} discharge
from the sarcoplasmic reticulum without requiring nergic inotropic response, Niedergerke and Page (198
proposed that adrenoceptors facilitate Ca^{2+} dischar
from the sarcoplasmic reticulum without requiring
increase in the I_{Ca} or in the process of Ca^{2+} -induced Ca
 proposed that adrenoceptors facilitate Ca^{2+} discharge
from the sarcoplasmic reticulum without requiring an
increase in the I_{Ca} or in the process of Ca^{2+} -induced Ca^{2+}
release; such a facilitation would result f from the sarcoplasmic reticulum without requiring an estation increase in the I_{Ca} or in the process of Ca^{2+} -induced Ca^{2+} presponsiveness; such a facilitation would result from the forma-
vertion of IP₃. However increase in the I_{Ca} or in the process of Ca^{2+} -induced Ca^{2+} Frelease; such a facilitation would result from the formation of IP₃. However, it should be kept in mind that the caffeine also increases myofibrillar conclusion. ffeine also increases myofibrillar responsiveness to left that a^{2+} , a phenomenon that could lead to a misleading medicion.

c. EVIDENCE THAT α_1 -ADRENOCEPTOR STIMULATION WEREASES THE MYOFIBRILLAR RESPONSIVENESS TO

Ca²⁺, a phenomenon that could lead to a misleading meas
conclusion.
c. EVIDENCE THAT α_1 -ADRENOCEPTOR STIMULATION which
INCREASES THE MYOFIBRILLAR RESPONSIVENESS TO with
CA²⁺. COULD THE DIACYLGLYCEROL LIMB PLAY A R conclusion.

c. EVIDENCE THAT α_1 -ADRENOCEPTOR STIMULATION wh

INCREASES THE MYOFIBRILLAR RESPONSIVENESS TO wit

CA²⁺. COULD THE DIACYLGLYCEROL LIMB PLAY A ROLE wh

IN MEDIATING THE EFFECTS OF α_1 -ADRENOCEPTOR AG C. EVIDENCE THAT α_1 -ADRENOCEPTOR STIMULATION
INCREASES THE MYOFIBRILLAR RESPONSIVENESS TO
CA²⁺. COULD THE DIACYLGLYCEROL LIMB PLAY A ROLE
IN MEDIATING THE EFFECTS OF α_1 -ADRENOCEPTOR AG-
ONISTS ON CONTRACTILE FOR INCREASES THE MYOFIBRILLAR RESPONSIVENESS TO
CA²⁺. COULD THE DIACYLGLYCEROL LIMB PLAY A ROLE
IN MEDIATING THE EFFECTS OF α_1 -ADRENOCEPTOR AG-
ONISTS ON CONTRACTILE FORCE AND MYOFIBRILLAR
SENSITIZATION? Endoh and Blin

ENOCEPTORS 16
the effects of sympathomimetic amines on Ca^{2+} tran-
sients and isometric contractions in isolated rabbit pap ENOCEPTORS 161
the effects of sympathomimetic amines on Ca^{2+} tran-
sients and isometric contractions in isolated rabbit pap-
illary muscles in which multiple superficial cells had been
microinjected with the Ca^{2+} -se the effects of sympathomimetic amines on Ca^{2+} transients and isometric contractions in isolated rabbit paillary muscles in which multiple superficial cells had been
microinjected with the Ca^{2+} -sensitive bioluminesce the effects of sympathomimetic amines on Ca^{2+} transients and isometric contractions in isolated rabbit papillary muscles in which multiple superficial cells had been microinjected with the Ca^{2+} -sensitive bioluminesc illary muscles in which multiple superficial cells had been
microinjected with the Ca^{2+} -sensitive bioluminescent
protein aequorin. These authors found that the modest
increase in Ca^{2+} transient produced by phenyleph mary muscles in which mattiple superficial cents had been
microinjected with the Ca^{2+} -sensitive bioluminescen
protein aequorin. These authors found that the modes
increase in Ca^{2+} transient produced by phenylephrino protein aequorin. These authors found that the modest
increase in Ca²⁺ transient produced by phenylephrine
was associated with a prominent increase in twitch con-
tractile force. For a given increase in the force of con increase in Ca^{2+} transient produced by phenylephrine
was associated with a prominent increase in twitch con-
tractile force. For a given increase in the force of con-
traction, α_1 -adrenoceptor stimulation induces a tractile force. For a given increase in the force of contractile force. For a given increase in the force of con-
traction, α_1 -adrenoceptor stimulation induces a smaller
change in the amplitude of the Ca^{2+} transient than did
other positive inotropic interventions. That traction, α_1 -adrenoceptor stimulation induces a smaller
change in the amplitude of the Ca²⁺ transient than did
other positive inotropic interventions. That is, the rela-
tion between the force developed and the ampl tion between the force developed and the amplitude of the aequorin signal is much steeper when the force is
increased by α_1 -adrenergic stimulation than when it is
altered by other positive inotropic interventions. The
suggestion was that the α_1 -adrenoceptor agonists increased by α_1 -adrenergic stimulation than when it is
altered by other positive inotropic interventions. The
suggestion was that the α_1 -adrenoceptor agonists should
increase the myofibrillar Ca^{2+} sensitivity (altered by other positive in
suggestion was that the α_1 -ad
increase the myofibrillar C₄
Blinks, 1988; Endoh, 1986).
Subsequently, Capogrossi

other positive inotropic interventions. That is, the rela-
tion between the force developed and the amplitude of
the aequorin signal is much steeper when the force is
increased by α_1 -adrenergic stimulation than when i Subsequently, Capogrossi et al. (1988) simultaneously
measured cytosolic Ca^{2+} and twitch amplitude in Indo-
1-loaded cardiomyocytes. For a given Ca^{2+} transient, α_1 increase the myofibrillar Ca^{2+} sensitivity (Endoh and Blinks, 1988; Endoh, 1986).

Subsequently, Capogrossi et al. (1988) simultaneously

measured cytosolic Ca^{2+} and twitch amplitude in Indo-

1-loaded cardiomyocyte Blinks, 1988; Endoh, 1986).

Subsequently, Capogrossi et al. (1988) simultaneously

measured cytosolic Ca²⁺ and twitch amplitude in Indo-

1-loaded cardiomyocytes. For a given Ca²⁺ transient, α_1 -

adrenoceptor ago dissequently, capogrossi et al. (1505) simulatieously
measured cytosolic Ca²⁺ and twitch amplitude in Indo
1-loaded cardiomyocytes. For a given Ca²⁺ transient, α_1
adrenoceptor agonists increased, whereas β -adre measured cytosolic Ca²⁺ and twitch amplitude in Indo-
1-loaded cardiomyocytes. For a given Ca²⁺ transient, α_1 -
adrenoceptor agonists increased, whereas β -adrenoceptor
agonists decreased, twitch amplitude. These adrenoceptor agonists increased, whereas β -adrenoceptor agonists decreased, twitch amplitude. These authors coluded that α_1 - and β -adrenoceptor stimulation produpposite effects on myofibrillar sensitivity to Ca agonists decreased, twitch amplitude. These authors concluded that α_1 - and β -adrenoceptor stimulation produce opposite effects on myofibrillar sensitivity to Ca^{2+} (Gambassi et al., 1992). Thus, the principle tha diately and β -difference the responsive opposite effects on myofibrillar sensitivity to Ca²⁺ (Gam-
bassi et al., 1992). Thus, the principle that α_1 -adrenergic
stimulation increases the responsiveness of myofibril cluded that α_1 - and β -adrenoceptor stimulation
opposite effects on myofibrillar sensitivity to bassi et al., 1992). Thus, the principle that α_1
stimulation increases the responsiveness of m
Ca²⁺ was confirmed besic crices on myomorinal schictivity to Ca¹ (Gansilver) since that α_1 -adrenerg mulation increases the responsiveness of myofibrils 1^{2+} was confirmed for single cardiac cells.
It also has been postulated that

bassis et al., 1992). Thus, the principle that α_1 -adrentergies
stimulation increases the responsiveness of myofibrils to
Ca²⁺ was confirmed for single cardiac cells.
It also has been postulated that α_1 -adrencept Ca²⁺ was confirmed for single cardiac cells.
Ca²⁺ was confirmed for single cardiac cells.
It also has been postulated that α_1 -adrenoceptor ago
mists increase the myofibrillar response to Ca²⁺ based on
the effect re also has been posturated that α_1 addenberghor age
mists increase the myofibrillar response to Ca^{2+} based on
the effects of α_1 -agonists on the parameters of the con-
traction-relaxation cycle (see section V.A the effects of α_1 -agonists on the parameters of the contraction-relaxation cycle (see section V.A.1) which strikingly resemble those induced by an increase in the length of the sarcomeres. The latter has been associat traction-relaxation cycle (see section V.A.1) which
ingly resemble those induced by an increase in the
of the sarcomeres. The latter has been associate
an enhancement of myofibrillar sensitivity to
(Meulemans et al., 1990 gly resemble those induced by an increase in the length
the sarcomeres. The latter has been associated with
enhancement of myofibrillar sensitivity to Ca^{2+}
feulemans et al., 1990; Li and Rouleau, 1991).
Definite eviden

of the sarcomeres. The latter has been associated with
an enhancement of myofibrillar sensitivity to Ca²⁺
(Meulemans et al., 1990; Li and Rouleau, 1991).
Definite evidence that α_1 -adrenoceptor agonists indeed
produc an enhancement of myofibrillar sensitivity to Ca^{2+}
(Meulemans et al., 1990; Li and Rouleau, 1991).
Definite evidence that α_1 -adrenoceptor agonists indeed
produce a myofibrillar sensitization to Ca^{2+} ions was
obt (we
use mains et al., 1550, Li and Rouleau, 1551).
Definite evidence that α_1 -adrenoceptor agonists inde
produce a myofibrillar sensitization to Ca²⁺ ions we
obtained by Pucéat et al (1990). A preparation of isolat
c produce a myohorinal sensulation ω Ca rolls was
obtained by Pucéat et al (1990). A preparation of isolated
chemically skinned cells was used, and the force devel-
oped by a single cell in response to various Ca^{2+} -co chemically skinned cells was used, and the force devel-
oped by a single cell in response to various Ca^{2+} -contain-
ing solutions was measured. This protocol was used to
establish a tension-pCa relationship in the absen oped by a single cell in response to various Ca^{2+} -containing solutions was measured. This protocol was used to establish a tension-pCa relationship in the absence or presence of phenylephrine pretreatment. When cells w ing solutions was measured. This protocol was used to
establish a tension-pCa relationship in the absence or
presence of phenylephrine pretreatment. When cells
were preexposed to phenylephrine before skinning, the
tensionestablish a tension-pCa relationship in the absence or
presence of phenylephrine pretreatment. When cells
were preexposed to phenylephrine before skinning, the
tension-pCa curve was significantly shifted toward the
left. presence of phenylephrine pretreatment. When cells
were preexposed to phenylephrine before skinning, the
tension-pCa curve was significantly shifted toward the
left. Thereby, it was demonstrated independently of
measuring were preexposed to phenylephrine before skinning, the tension-pCa curve was significantly shifted toward the left. Thereby, it was demonstrated independently of measuring intracellular Ca^{2+} that phenylephrine increased tension-pCa curve was significantly shifted toward the left. Thereby, it was demonstrated independently of measuring intracellular Ca^{2+} that phenylephrine increased the Ca^{2+} sensitivity of myofilaments. The pCa₅₀, left. Thereby, it was demonstrated independently of measuring intracellular Ca^{2+} that phenylephrine increased the Ca^{2+} sensitivity of myofilaments. The pCa₅₀, which is increased following the treatment of the cell creased the Ca²⁺ sensitivity of myofilaments. The pCa₅₀, which is increased following the treatment of the cells with α_1 -adrenoceptor agonists, returned to control values when alkaline phosphatase was applied to s creased the Ca²⁺ sensitivity of myofilaments. The pCa₅₀,
which is increased following the treatment of the cells
with α_1 -adrenoceptor agonists, returned to control values
when alkaline phosphatase was applied to s which is increased following the treatment of the cells
with α_1 -adrenoceptor agonists, returned to control values
when alkaline phosphatase was applied to skinned cells.
Thus, contrary to β -adrenoceptor agonists, w with α_1 -adrenoceptor agonists, returned to control values
when alkaline phosphatase was applied to skinned cells.
Thus, contrary to β -adrenoceptor agonists, which are
known to decrease the Ca²⁺ sensitivity of myo

nists are "sensitizing" cardiotonic agents (Pucéat et al., 1990, 1992; Terzic et al., 1992a).

Some evidence suggests that PKC activators mimic

TERZIC ET
sts are "sensitizing" cardiotonic agents (Pucéat et al., w
90, 1992; Terzic et al., 1992a).
Some evidence suggests that PKC activators mimic W
ceptor-mediated myofibrillar sensitization. Pucéat et α receptor-mediated myofibrical materials. The evidence suggests that PKC activators mimic

Some evidence suggests that PKC activators mimic

receptor-mediated myofibrillar sensitization. Pucéat et

al. (1990) demonstrated, nists are "sensitizing" cardiotonic agents (Pucéat et al., 1990, 1992; Terzic et al., 1992a).

Some evidence suggests that PKC activators mimic

receptor-mediated myofibrillar sensitization. Pucéat et

al. (1990) demonstra 1990, 1992; Terzic et al., 1992a).

Some evidence suggests that PKC activators mimic

receptor-mediated myofibrillar sensitization. Pucéat et

al. (1990) demonstrated, in skinned rat myocardial cells,

that the application Some evidence suggests that PKC activators m
receptor-mediated myofibrillar sensitization. Pucée
al. (1990) demonstrated, in skinned rat myocardial c
that the application of PKC cell-permeant active
prior to skinning incr neceptor-ineurated informal sensitization. I detail et a_1 -
al. (1990) demonstrated, in skinned rat myocardial cells, Na
that the application of PKC cell-permeant activators 199
prior to skinning increases the myofibril that the application of PKC cell-permeant activators 1999;
prior to skinning increases the myofibrillar responsive-
ness to Ca^{2+} , as indicated by a leftward shift of the port
tension-pCa relationship. The leftward shif prior to skinning increases the myofibrillar responsiveness to Ca^{2+} , as indicated by a leftward shift of the ptension-pCa relationship. The leftward shift was also creversed by the application of alkaline phosphatase t ness to Ca^{2+} , as indicated by a leftward shift of the tension-pCa relationship. The leftward shift was also reversed by the application of alkaline phosphatase to the skinned cells. This would imply that PKC activation tension-pCa relationship. The leftward shift was also reversed by the application of alkaline phosphatase to the skinned cells. This would imply that PKC activation causes a phosphorylation of the contractile proteins, th reversed by the application of alkaline phosphatase to ex-
the skinned cells. This would imply that PKC activation ide
causes a phosphorylation of the contractile proteins, tra-
thereby producing the observed increase in causes a phosphorylation of the contractile proteins, tractile force produced by phenylephrine in multicellular
thereby producing the observed increase in myofibrillar (Terzic and Vogel, 1990, 1991; Otani et al., 1990) or causes a phosphorylation of the contractile proteins,
thereby producing the observed increase in myofibrillar
Ca²⁺ responsiveness. It is important to note that the
direct application of PKC, purified from bovine brain, thereby producing the observed increase in myofibrillar (Ca^{2+} responsiveness. It is important to note that the undirect application of PKC, purified from bovine brain, to by skinned fibers was ineffective in alteri Ca^{2+} responsiveness. It is important to note that direct application of PKC, purified from bovine brain, skinned fibers was ineffective in altering the myofibril responsiveness to Ca^{2+} , whereas the application $cAMP$ direct application of FKC, purified from bovine brain, to by skinned fibers was ineffective in altering the myofibrillar ion responsiveness to Ca^{2+} , whereas the application of edical cAMP-dependent protein kinase decrea cAMP-dependent protein kinase decreased the myofila-
ment response. Hence, PKC per se appeared not to
directly cause the enhanced responsiveness of myofibrils.
However, the authors could not totally exclude the hy-
pothesi cAMP-dependent protein kinase decreased the myofila-
ment response. Hence, PKC per se appeared not to lin
directly cause the enhanced responsiveness of myofibrils. pl
However, the authors could not totally exclude the hy-
 the brain PKC per se appeared not to the
directly cause the enhanced responsiveness of myofibrils. pl
However, the authors could not totally exclude the hy-
pothesis that the lack of effect of PKC could be related
in to th However, the authors could not totally exclude the hy-
pothesis that the lack of effect of PKC could be related ius
to the brain PKC preparation they used. Indeed, the
or PKC isozyme profile is different in brain and hear pothesis that the lack of effect of PKC could be rel
to the brain PKC preparation they used. Indeed,
PKC isozyme profile is different in brain and heart
review, see Kikkawa et al., 1989). More specifically,
preparation use we the brain PKC preparation they used. Indeed, the one
PKC isozyme profile is different in brain and heart (for
review, see Kikkawa et al., 1989). More specifically, the the
preparation used did not contain the minor $Ca^{$ PKC isozyme profile is different in brain and heart (review, see Kikkawa et al., 1989). More specifically, the preparation used did not contain the minor Ca^{2+} -insestive isoforms of the kinase. In harmony with such hypo review, see Kikkawa et al., 1989). More specifically, the preparation used did not contain the minor Ca^{2+} -insensitive isoforms of the kinase. In harmony with such an hypothesis, Collins et al. (1992), using a PKC pseud preparation used did not contain the minor Ca²⁺-inses
sitive isoforms of the kinase. In harmony with such a
hypothesis, Collins et al. (1992), using a PKC pseud
substrate inhibitor, showed that a Ca²⁺-independent i
of sitive isoforms of the kinase. In harmony with such an hypothesis, Collins et al. (1992), using a PKC pseudo-substrate inhibitor, showed that a Ca²⁺-independent isoform of PKC mediated the α_1 -adrenoceptor-induced co exponses. Coming et al. (1992), using a 1 NC pseudo-
substrate inhibitor, showed that a Ca²⁺-independent is-
oform of PKC mediated the α_1 -adrenoceptor-induced B
contraction in ferret aorta cells. Moreover, Khalil et substrate inhibitor, showed that a Ca²⁺-independent is-
oform of PKC mediated the α_1 -adrenoceptor-induced Bountra and Vaughan-Jones, 1989; Lagadic-Gossmann
contraction in ferret aorta cells. Moreover, Khalil et al., contraction in ferret aorta cells. Moreover, Khalil et al., contraction in ferret aorta cells. Moreover, Khalil et al.,
(1992), using the same preparation, reported that the
translocation of the Ca²⁺-independent isozyme ϵ of PKC
was involved in the Ca²⁺-independent contract (1992), using the same preparation, reported that the translocation of the Ca²⁺-independent isozyme ϵ of PKC e was involved in the Ca²⁺-independent contraction in-
duced by phenylephrine in this tissue. It was post was involved in the Ca^{2+} -independent contraction in-
duced by phenylephrine in this tissue. It was postulated
that an additional protein kinase that may be activated
by PKC could be responsible for the myofibrillar sen duced by phenylephrine in this tissue. It was postulated
that an additional protein kinase that may be activated
by PKC could be responsible for the myofibrillar sensi-
tization. MLC kinase could be this additional kinase. that an additional protein kinase that may be activated
by PKC could be responsible for the myofibrillar sensi-
tization. MLC kinase could be this additional kinase.
Indeed, this kinase which specifically phosphorylates
ML that an additional protein kinase that may be activated
by PKC could be responsible for the myofibrillar sensi-
tization. MLC kinase could be this additional kinase.
Indeed, this kinase which specifically phosphorylates
ML by PKC could be responsible for the myofibrillar sensi-
tization. MLC kinase could be this additional kinase.
Indeed, this kinase which specifically phosphorylates
MLC-2 (for review, see Barany and Barany, 1980) in-
creas tization. MLC kinase could be this additional kinase. di-
Indeed, this kinase which specifically phosphorylates α_1
MLC-2 (for review, see Barany and Barany, 1980) in-
creases the Ca²⁺ sensitivity of cardiac myofilam Indeed, this kinase which specifically phosphoryla MLC-2 (for review, see Barany and Barany, 1980) creases the Ca^{2+} sensitivity of cardiac myofilame:
(Morano et al., 1985; Clément et al., 1992). The abile of PKC to enh xation of the mystem of the mystem of the myofilaments dependence al., 1985; Clément et al., 1992). The ability of PKC to enhance MLC kinase-induced Ca²⁺ sensitization of the myofilaments has been reported in skinned th (Morano et al., 1985; Clément et al., 1992). The ability
of PKC to enhance MLC kinase-induced Ca^{2+} sensiti-
zation of the myofilaments has been reported in skinned
cardiomyocytes (Clément et al., 1992).
In addition to of PKC to enhance MLC kinase-induced Ca^{2+} sensiti-

of PKC to enhance MLC kinase-induced Ca²⁺ sensitization of the myofilaments has been reported in skinned cardiomyocytes (Clément et al., 1992).
In addition to sensitizing the myofibrils via phosphor-
ylation, α_1 -adr zation of the myofilaments has been reported in skinned

cardiomyocytes (Clément et al., 1992). int

In addition to sensitizing the myofibrils via phosphor-

ylation, α_1 -adrenoceptor agonists also could conceivably Ma cardiomyocytes (Clément et al., 1992).

In addition to sensitizing the myofibrils via phosphor-

ylation, α_1 -adrenoceptor agonists also could conceivably

augment myofibrillar responsiveness to Ca²⁺ through an

intr In addition to sensitizing the myofibrils via phosphor-
ylation, α_1 -adrenoceptor agonists also could conceivably
augment myofibrillar responsiveness to Ca^{2+} through an
intracellular alkalinization. An increase in p augment myofibrillar responsiveness to Ca^{2+} through an intracellular alkalinization. An increase in pH_i produces a positive inotropic effect (Vaughan-Jones et al., 1987) which is, in part, due to an increase in myofi augment myofibrillar responsiveness to Ca^{2+} through an
intracellular alkalinization. An increase in pH_i produces
in
a positive inotropic effect (Vaughan-Jones et al., 1987) 19
which is, in part, due to an increase in intracellular alkalinization. An increase in pH_i produces in a positive inotropic effect (Vaughan-Jones et al., 1987) 198 which is, in part, due to an increase in myofibrillar Ca²⁺ 199 sensitivity (Fabiato and Fabiato sensitivity (Fabiato and Fabiato, 1978). Although pH_i is in rabbit (Kushida et al., 1988) or rat papillary muscles
a major regulator of cardiac excitation-contraction cou-
pling (Kurachi, 1982; Solaro et al., 1988; Orch Kentish, 1990), pharmacological modulation of pH_i has

^e
which cardiac contractility could be regulated (Terzic
and Vogel, 1990; Krämer et al., 1991; Terzic et al., 1992a; ^{er} AL.
which cardiac contractility could be regulated (Terzic
and Vogel, 1990; Krämer et al., 1991; Terzic et al., 1992a;
Wang and Morgan, 1992). As described in section IV.B, ET AL.
which cardiac contractility could be regulated (Terzic
and Vogel, 1990; Krämer et al., 1991; Terzic et al., 1992a;
Wang and Morgan, 1992). As described in section IV.B,
 α_1 -adrenoceptor agonists elevate pH_i by which cardiac contractility could be regulated (Terzic and Vogel, 1990; Krämer et al., 1991; Terzic et al., 1992a; Wang and Morgan, 1992). As described in section IV.B, α_1 -adrenoceptor agonists elevate pH_i by activa winch caluat contractinty could be regulated (Terzic
and Vogel, 1990; Krämer et al., 1991; Terzic et al., 1992a;
Wang and Morgan, 1992). As described in section IV.B,
 α_1 -adrenoceptor agonists elevate pH_i by activati ang and Morgan, 1992). As described in section IV.B -adrenoceptor agonists elevate pH_i by activating the a⁺/H⁺ antiport (Iwakura et al., 1990; Terzic et al. 92a; Wallert and Fröhlich, 1992; Pucéat et al., 1993a) Sev

 α_1 -adrenoceptor agonists elevate pH_i by activating the Na⁺/H⁺ antiport (Iwakura et al., 1990; Terzic et al., 1992a; Wallert and Fröhlich, 1992; Pucéat et al., 1993a). Several findings indicate that the activity 1992a; Wallert and Fröhlich, 1992; Pucéat et al., 1993a).
Several findings indicate that the activity of the anti-
porter could participate in the positive inotropic effects
of α_1 -adrenoceptor agonists. First, inhibit 1992a; Wallert and Fröhlich, 1992; Pucéat et al.,
Several findings indicate that the activity of the
porter could participate in the positive inotropic
of α_1 -adrenoceptor agonists. First, inhibition of Γ
exchange b Several findings indicate that the activity of the anti-
porter could participate in the positive inotropic effects
of α_1 -adrenoceptor agonists. First, inhibition of Na⁺/H⁺
exchange by selective blockers (e.g., he porter could participate in the positive inotropic enects
of α_1 -adrenoceptor agonists. First, inhibition of Na⁺/H⁺
exchange by selective blockers (e.g., hexamethylamilor-
ide, ethylisopropylamiloride) inhibits the exchange by selective blockers (e.g., hexamethylamiloride, ethylisopropylamiloride) inhibits the increase in contractile force produced by phenylephrine in multicellular (Terzic and Vogel, 1990, 1991; Otani et al., 1990) o de, emynsopropyrammorde) inmotes the increase in con-
tractile force produced by phenylephrine in multicellular
(Terzic and Vogel, 1990, 1991; Otani et al., 1990) or
unicellular cardiac preparations (Gambassi et al., 1992 That is that cannot be produced by phenylephrime in mutteentum

(Terzic and Vogel, 1990, 1991; Otani et al., 1990)

unicellular cardiac preparations (Gambassi et al., 1990)

by at least 50%. Similarly, ionic substitution (Terzic and Vogel, 1990, 1991; Otani et al., 1990
unicellular cardiac preparations (Gambassi et al., 1
by at least 50%. Similarly, ionic substitution of Na⁺
ions that cannot replace Na⁺ in Na⁺/H⁺ exchange m
edly r unicellular cardiac preparations (Gambassi et al., 1992)
by at least 50%. Similarly, ionic substitution of Na⁺ with
ions that cannot replace Na⁺ in Na⁺/H⁺ exchange mark-
edly reduces the positive inotropic action ions that cannot replace Na⁺ in Na⁺/H⁺ exchange markedly reduces the positive inotropic action of phenylephrine. Specifically, it is known that lithium, but not choline, will exchange for H⁺ via the Na⁺/H⁺ ant ions that cannot replace Na⁺ in Na⁺/H⁺ exchange mark-
edly reduces the positive inotropic action of phenyleph-
rine. Specifically, it is known that lithium, but not cho-
line, will exchange for H⁺ via the Na⁺/H edivergences the positive interiopte action of phenylephricine. Specifically, it is known that lithium, but not choline, will exchange for H^+ via the Na⁺/H⁺ antiport phenylephrine-induced positive inotropic effects ime. Specincally, it is allown that fitnum, but not choline, will exchange for H^+ via the Na⁺/H⁺ antiport phenylephrine-induced positive inotropic effects in choline-substituted solutions averaged 37% of that in li line-substituted solutions averaged 37% of that in lith-
ium-substituted solutions (Terzic and Vogel, 1991). Sec-
ond, the time course and magnitude of the α_1 -adrenocep-
tor-mediated alkalinization closely correlates line-substituted solutions averaged 37% of that in lith-
ium-substituted solutions (Terzic and Vogel, 1991). Sec-
ond, the time course and magnitude of the α_1 -adrenocep-
tor-mediated alkalinization closely correlates ham-substituted solutions (1 erzic and Vogel, 1991). Second, the time course and magnitude of the α_1 -adrenoceptor-mediated alkalinization closely correlates to that of the positive inotropic effect (Terzic et al., 199 (ond, the time course and magnitude of the α_1 -adrenoceptor-mediated alkalinization closely correlates to that of the positive inotropic effect (Terzic et al., 1991, 1992a;
Gambassi et al., 1992). Third, the degree of the positive indition effect (Terzic et al., 1991, 1992a, Gambassi et al., 1992). Third, the degree of alkalinization (0.1 pH unit) caused by α_1 -adrenoceptor agonists (Terzic et al., 1992a) is known to increase contra (0.1 pH unit) caused by α_1 -adrenoceptor agonists (Terzic et al., 1992a) is known to increase contractile force by al., 1992a) is known to increase contractile force by
veral-fold in cardiac tissue (Vaughan-Jones et al., 1987;
vuntra and Vaughan-Jones, 1989; Lagadic-Gossmann
d Feuvray, 1990).
Although PKC analogs may mimic some α_1

Bountra and Vaughan-Jones, 1989; Lagadic-Gossmann
and Feuvray, 1990).
Although PKC analogs may mimic some α_1 -adrenergic
effects, Yuan et al. (1987), Capogrossi et al. (1990), and
Otani et al. (1992) showed that phorbo Bountra and Vaughan-Jones, 1989; Lagadic-Gossmann
and Feuvray, 1990).
Although PKC analogs may mimic some α_1 -adrenergic
effects, Yuan et al. (1987), Capogrossi et al. (1990), and
Otani et al. (1992) showed that phorbo Although PKC analogs may mimic some α_1 -adrenergic
effects, Yuan et al. (1987), Capogrossi et al. (1990), and
Otani et al. (1992) showed that phorbol esters and 1,2-
dioctanoylglycerol produce a negative inotropic resp Although FRC analogs may mimic some α_1 -adrenergic
effects, Yuan et al. (1987), Capogrossi et al. (1990), and
Otani et al. (1992) showed that phorbol esters and 1,2-
dioctanoylglycerol produce a negative inotropic resp enects, ruan et al. (1987), Capogrossi et al. (1990), and
Otani et al. (1992) showed that phorbol esters and 1,2-
dioctanoylglycerol produce a negative inotropic response
in perfused beating hearts, papillary muscle, or is Otani et al. (1992) showed that phorbol esters and 1,2-dioctanoylglycerol produce a negative inotropic response
in perfused beating hearts, papillary muscle, or isolated
rat ventricular myocytes. This result would not be dioctality apply the product a hegative inotropic response
in perfused beating hearts, papillary muscle, or isolated
rat ventricular myocytes. This result would not be pre-
dicted if PKC mediates the positive inotropic ef rat ventricular myocytes. This result would not be pre-
dicted if PKC mediates the positive inotropic effect of
 α_1 -agonists, unless an opposing effect of PKC activation
was present in intact myocytes; this latter effe dicted if FKC mediates the positive inotropic effect of α_1 -agonists, unless an opposing effect of PKC activation was present in intact myocytes; this latter effect would lead to an overall negative inotropic effect. I was present in intact myocytes; this latter effect would
lead to an overall negative inotropic effect. Indeed, in
single cardiomyocytes loaded with the Ca^{2+} indicator
Indo-1, phorbol-12-myristate-13-acetate and 1,2-dio lead to an overall negative inotropic effect. Indeed, in
single cardiomyocytes loaded with the Ca^{2+} indicator
Indo-1, phorbol-12-myristate-13-acetate and 1,2-dioc-
tanoylglycerol markedly reduce the amplitude of the
in Indo-1, phorbol-12-myristate-13-acetate and 1,2-dioc-
tanoylglycerol markedly reduce the amplitude of the
intracellular Ca^{2+} transient. This finding could explain
why PKC activators produce a negative inotropic effect. Indo-1, phorbol-12-myristate-13-acetate and 1,2-dioc-
tanoylglycerol markedly reduce the amplitude of the
intracellular Ca²⁺ transient. This finding could explain
why PKC activators produce a negative inotropic effect.
 tanoylglycerol markedly reduce the amplitude of the
intracellular Ca²⁺ transient. This finding could explain
why PKC activators produce a negative inotropic effect.
Moreover, other groups have described a positive ino-
 why PKC activators produce a negative inotropic effect.
Moreover, other groups have described a positive ino-
tropic effect with 1,2-dioctanoylglycerol (10 to 100 μ M)
in electrically driven guinea pig atria (Teutsch et Moreover, other groups have described a positive ino-

tropic effect with 1,2-dioctanoylglycerol (10 to 100 μ M)

in electrically driven guinea pig atria (Teutsch et al.

1987) and rat cardiac myocytes (McLeod and Hardi Moreover, other groups have described a positive ino-
tropic effect with 1,2-dioctanoylglycerol (10 to 100 μ M)
in electrically driven guinea pig atria (Teutsch et al.,
1987) and rat cardiac myocytes (McLeod and Harding in electrically driven guinea pig atria (Teutsch et al., 1987) and rat cardiac myocytes (McLeod and Harding, 1991) or no effect of phorbol esters on contractile force in rabbit (Kushida et al., 1988) or rat papillary musc 1991) or no effect of phorbol esters on contractile force 1991) or no enect of phorbot esters on contractile force
in rabbit (Kushida et al., 1988) or rat papillary muscle
(Otani et al., 1988). Whether the application of a PK
activator results in a positive, negative, or no inotr In rabolt (Kushida et al., 1566) or rat papinary muscles
(Otani et al., 1988). Whether the application of a PKC
activator results in a positive, negative, or no inotropic
effect may depend on the net effect of the intracel

CARDIAC α_1 -ADRE
fibrils, the size of the intracellular Ca²⁺ transient (related cor
or not to the external Ca²⁺ concentration), the state of m
Ca²⁺ loading and cellular tolerance to Ca²⁺, and other n CARDIAC α_1 -ADR
fibrils, the size of the intracellular Ca²⁺ transient (related
or not to the external Ca²⁺ concentration), the state of
Ca²⁺ loading and cellular tolerance to Ca²⁺, and other
unknown factor(s). fibrils, the size of the intracellular Ca^{2+} transient (related cover on to the external Ca^{2+} concentration), the state of metal Ca^{2+} loading and cellular tolerance to Ca^{2+} , and other nisunknown factor(s). als

 Ca^{2+} loading and cellular tolerance to Ca^{2+} , and other unknown factor(s).
There have been contradictory reports regarding the ability of PKC blockers to prevent the positive inotropic effect of α_1 -adrenoceptor a et al. (1988, 1992) reported that staurosporine and H7 There have been contradictory reports regarding the
ability of PKC blockers to prevent the positive inotropic zate
effect of α_1 -adrenoceptor agonists. On one hand, Otani point
et al. (1988, 1992) reported that stauros inhere have been contradictory reports regarding the
ability of PKC blockers to prevent the positive inotropic effect of α_1 -adrenoceptor agonists. On one hand, Otani
et al. (1988, 1992) reported that staurosporine and ability of FRC blockers to prevent the positive inotropic zate
effect of α_1 -adrenoceptor agonists. On one hand, Otani potential
et al. (1988, 1992) reported that staurosporine and H7 pointhibited the sustained positiv effect of α_1 -adrenoceptor agomsts. On one hand, Otam
et al. (1988, 1992) reported that staurosporine and H7
inhibited the sustained positive inotropic effect induced
by α_1 -adrenoceptor agonists in rat papillary mu et al. (1566, 1592) reported that staurosporme and \overline{H} inhibited the sustained positive inotropic effect induced
by α_1 -adrenoceptor agonists in rat papillary muscles. On
the other hand, Endou et al. (1991) showed by α_1 -adrenoceptor agonists in rat papillary muscles. On
the other hand, Endou et al. (1991) showed that H7 does
not affect the contractile response of rat papillary muscle
to phenylephrine, and that neither phorbol 1 the other hand, Endou et al. (1991) showed that H7 does
not affect the contractile response of rat papillary muscle
to phenylephrine, and that neither phorbol 12,13-dibu-
tyrate or 12-O-tetradecanoylphorbol-13-acetate rep the other hand, Endou et al. (1991) showed that H7 does
not affect the contractile response of rat papillary muscle
to phenylephrine, and that neither phorbol 12,13-dibu-
tyrate or 12-O-tetradecanoylphorbol-13-acetate rep not affect the contractile response of rat papillary muscle
to phenylephrine, and that neither phorbol 12,13-dibu-
tyrate or 12-O-tetradecanoylphorbol-13-acetate repro-
duced the effects of α_1 -adrenergic stimulation. to phenylephrine, and that neither phorbol 12,13-dibutyrate or 12-O-tetradecanoylphorbol-13-acetate reproduced the effects of α_1 -adrenergic stimulation. Hence there are discrepancies in the findings which, in part dep tyrate or 12-O-tetradecanoylphorbol-13-acetate repro-
duced the effects of α_1 -adrenergic stimulation. Hence,
there are discrepancies in the findings which, in part,
depend on whether PKC was activated through the adre there are discrepancies in the findings which, in part,
there are discrepancies in the findings which, in part,
depend on whether PKC was activated through the adre-
noceptor or phorbol esters. It should be kept in mind n depend on whether PKC was activated through the adre-
noceptor or phorbol esters. It should be kept in mind
that the diacylglycerol pathway represents only one limb
of the PI signal transduction system and that receptor
ac depend on whether FKC was activated through the a
noceptor or phorbol esters. It should be kept in n
that the diacylglycerol pathway represents only one l
of the PI signal transduction system and that rece
activation may g that the diacylglycerol pathway represents only one limb 1978; Osnes et al., 1985). Thus, in contrast with many
of the PI signal transduction system and that receptor other positive inotropic drugs, such as β -adrenocep specific isozymes of PKC (Ryves et al., 1991; Otani et out concomitant tachycardia. This result is at first sur-
al., 1992; Pucéat et al., 1993b) that are not activated prising knowing that α_1 -adrenoceptor stimulation of the PI signal transduction system and that receptor of activation may generate additional cofactors. Furthermore, exogenously applied PKC activators may stimulate consection is al., 1992; Pucéat et al., 1993b) that are activation may generate additional colactors. Further
more, exogenously applied PKC activators may stimulat
specific isozymes of PKC (Ryves et al., 1991; Otani ϵ
al., 1992; Pucéat et al., 1993b) that are not activate
fo more, exogenously applied FKC activators may stimula
specific isozymes of PKC (Ryves et al., 1991; Otani
al., 1992; Pucéat et al., 1993b) that are not activat
following receptor occupation. Non-PKC-dependent a
tions of pho specific isozymes of PKC (Kyves et al., 1991; Otani
al., 1992; Pucéat et al., 1993b) that are not activat
following receptor occupation. Non-PKC-dependent at
tions of phorbol esters cannot be excluded either (Wa
son and K

brillar Ca²⁺ sensitivity but do not always mimic the specified positive inotropic effects of α_1 -adrenoceptor agonists. It also always mimic the specified positive inotropic effects of α_1 -adrenoceptor agonists. I son and Karmazyn, 1991).
In summary, activators of PKC can increase myofi-
brillar Ca²⁺ sensitivity but do not always mimic the
positive inotropic effects of α_1 -adrenoceptor agonists. It
is not clear whether there a In summary, activators of PKC can increase my
brillar Ca²⁺ sensitivity but do not always mimic
positive inotropic effects of α_1 -adrenoceptor agonists
is not clear whether there are other intracellular mess
gers, in in summary, activators of 1 KC can increase inyont-
brillar Ca²⁺ sensitivity but do not always mimic the
positive inotropic effects of α_1 -adrenoceptor agonists. It
is not clear whether there are other intracellular bind a sensitivity but do not always mimic the positive inotropic effects of α_1 -adrenoceptor agonists.
is not clear whether there are other intracellular messee
gers, in addition to PKC, that mediate the inotrop
effec positive inctropic effects of α_1 -adrenoceptor agonists. It and
is not clear whether there are other intracellular messen-
gers, in addition to PKC, that mediate the inotropic ra
effects of α_1 -adrenoceptor agonists is not clear whether there are other intracellular messen-
gers, in addition to PKC, that mediate the inotropic rateffects of α_1 -adrenoceptor agonists or whether the phar-
macological tools used are imperfect. Thus, i gers, in addition to FRC, that metallie the inotropic
effects of α_1 -adrenoceptor agonists or whether the phar-
macological tools used are imperfect. Thus, it may be
premature to draw any definite conclusion regarding enects of α_1 -adrenoceptor a
macological tools used are
premature to draw any defin
role of the PI pathway in t
of α_1 -adrenoceptor agonists
Unlike traditional "Ca²⁺ macological tools used are imperiect. Thus, it may be premature to draw any definite conclusion regarding the 1
role of the PI pathway in the positive inotropic effects (of α_1 -adrenoceptor agonists.
Unlike traditional

role of the PI pathway in the positive inotropic effects (for α_1 -adrenoceptor agonists. include to contractile proteins, α_1 -adrenoceptor agonists fibincrease the responsiveness of myofilaments to Ca^{2+} via the t bind to contractile proteins, α_1 -adrenoceptor agonists the contractive process, α_1 -attendeeptor agometers
increase the responsiveness of myofilaments to Ca^{2+} via the
two receptor-mediated mechanisms: (a) intracellular al-
kalinization and (b) phosphorylation of contrac leftware the responsiveness of injoint
angles to Ca Via the pconceptor-mediated mechanisms: (a) intracellular al-
kalinization and (b) phosphorylation of contractile pro-
tein(s). As previously argued (Terzic et al., 1992 two receptor-metricular metricularisms. (a) intractential areal halo and kalinization and (b) phosphorylation of contractile produced by the leftward shift of the pCa-tension curve produced by the phosphorylation of the c tein(s). As previously argued (Terzic et al., 1992a), the
leftward shift of the pCa-tension curve produced by the
phosphorylation of the contractile protein(s) reaches 0.13 maticity of isolated (normally polarized) Purkin betward shift of the pca-tension curve produced by the
phosphorylation of the contractile protein(s) reaches 0.13 maint. pCa (Pucéat et al., 1990), whereas the shift expected de
from the alkalinization (approximately 0.1 phosphorylation of the contractile protein(s) reaches 0.13
unit \cdot pCa (Pucéat et al., 1990), whereas the shift expected
from the alkalinization (approximately 0.1 unit \cdot pH) can
be calculated to amount to 0.07 unit unit PCa (Fuceat et al., 1990), whereas the shirt expected
from the alkalinization (approximately 0.1 unit PH) can
be calculated to amount to 0.07 unit PCa (Fabiato and
Fabiato, 1978). The phosphorylation of contractile p From the antimization (approximately 0.1 unit \cdot pH) can
be calculated to amount to 0.07 unit \cdot pCa (Fabiato and fi
Fabiato, 1978). The phosphorylation of contractile pro-
tein(s) is not dependent on the alkalinizati be calculated to amount to 0.07 time-pea (Fabiato and Fabiato, 1978). The phosphorylation of contractile precision is not dependent on the alkalinization because is not affected by Na^+/H^+ antiport inhibitors whic co rabiato, 1978). The phosphorylation of contractie pro
tein(s) is not dependent on the alkalinization because is
is not affected by Na^+/H^+ antiport inhibitors whic
completely abolish the intracellular increase in pH_i (beints) is not dependent on the anxaninzation because it
is not affected by Na^+/H^+ antiport inhibitors which an
completely abolish the intracellular increase in pH_i (Ter-
zic et al., 1992a; reviewed by Pucéat et al., is not anected by YNA /H antiport inimitions which
completely abolish the intracellular increase in pH_i (Ter-
zic et al., 1992a; reviewed by Pucéat et al., 1992). Con-
sequently, a total pCa₅₀ shift of 0.2 unit pCa co completely abolish the intracement increase in pri_i (1 er zic et al., 1992a; reviewed by Pucéat et al., 1992). Con sequently, a total pCa₅₀ shift of 0.2 unit pCa could be expected following α_1 -adrenoceptor stimula

ENOCEPTORS
could account for a major portion of the α_1 -adrenoceptor-
mediated positive inotropic effect, albeit other r ENOCEPTORS
could account for a major portion of the α_1 -adrenocept
mediated positive inotropic effect, albeit other mech
nisms (e.g., prolongation of the action potential) co ENOCEPTORS 163
could account for a major portion of the α_1 -adrenoceptor-
mediated positive inotropic effect, albeit other mecha-
nisms (e.g., prolongation of the action potential) could
also be important (fig. 1). The could account for a major portion of the α_1 -adrenoceptor-
mediated positive inotropic effect, albeit other mecha-
nisms (e.g., prolongation of the action potential) could
also be important (fig. 1). The intracellular mediated positive inotropic effect, aftern other mechanisms (e.g., prolongation of the action potential) could also be important (fig. 1). The intracellular balance between phosphorylation/dephosphorylation and alkalinizat msins (e.g., prolongation of the action potential) could
also be important (fig. 1). The intracellular balance be-
tween phosphorylation/dephosphorylation and alkalini-
zation/buffer capacity may determine the respective also be important (iig. 1). The intracement balance be-
tween phosphorylation/dephosphorylation and alkalini-
zation/buffer capacity may determine the respective im-
portance of the two sensitizing mechanisms in the overa Exation/buffer capacity may determine the respective in
portance of the two sensitizing mechanisms in the overa
positive inotropic effect of α_1 -adrenoceptor agonists.
addition, the intracellular control of the degree zation/burier capacity may determine the respective
portance of the two sensitizing mechanisms in the ov
positive inotropic effect of α_1 -adrenoceptor agonist
addition, the intracellular control of the degree of p
phor portance of the two sensitizing mechanisms in the overall
positive inotropic effect of α_1 -adrenoceptor agonists. In
addition, the intracellular control of the degree of phos-
phorylation and alkalinization produced by positive inotropic effect of α_1 -adrenoceptor agonists. In
addition, the intracellular control of the degree of phos-
phorylation and alkalinization produced by α_1 -adreno-
ceptor agonists may prevent an oversensiti addition, the intracemental control of the degree of phos-
phorylation and alkalinization produced by α_1 -adreno-
ceptor agonists may prevent an oversensitization of the
myofilaments to Ca^{2+} , an undesirable effect o phorylation and algorithmical
ceptor agonists may preven
myofilaments to Ca^{2+} , an
served with conventional (
bind to contractile proteins myofilaments to Ca²⁺, an
served with conventional
bind to contractile protein
B. Chronotropic Effects
Usually, in normal adul served with conventional Ca^{2+} sensitizers that directly
bind to contractile proteins.
B. Chronotropic Effects
Usually, in normal adult hearts, α_1 -adrenoceptor ago-
nists induce no chronotropic action (Wagner and Br

B. Chronotropic Effects

Usually, in normal adult hearts, α_1 -adrenoceptor ago-

nists induce no chronotropic action (Wagner and Brodde,

1978; Osnes et al., 1985). Thus, in contrast with many B. Chronotropic Effects
Usually, in normal adult hearts, α_1 -adrenoceptor ago-
nists induce no chronotropic action (Wagner and Brodde,
1978; Osnes et al., 1985). Thus, in contrast with many
other positive inotropic dru Usually, in normal adult hearts, α_1 -adrenoceptor ag
nists induce no chronotropic action (Wagner and Brodd
1978; Osnes et al., 1985). Thus, in contrast with man
other positive inotropic drugs, such as β -adrenocept
a Usuany, in normal adult hearts, α_1 -adrenoceptor
nists induce no chronotropic action (Wagner and Brc
1978; Osnes et al., 1985). Thus, in contrast with n
other positive inotropic drugs, such as β -adrenoce
agonists, t 1978; Osnes et al., 1985). Thus, in contrast with mare other positive inotropic drugs, such as β -adrenoceptiagonists, that produce cardiac acceleration, α_1 -adrenoceptiagonists, that produce cardiac acceleration, $\$ 1976, Osnes et al., 1989). Thus, in contrast with many
other positive inotropic drugs, such as β -adrenoceptor
agonists, that produce cardiac acceleration, α_1 -adreno-
ceptor agonists produce a positive inotropic eff but positive inotropic urigs, such as p-adrenocepto
agonists, that produce cardiac acceleration, α_1 -adrenoceptor agonists produce a positive inotropic effect with
out concomitant tachycardia. This result is at first s out concomitant tachycardia. This result is at first surprising knowing that α_1 -adrenoceptor stimulation modulates several ionic currents present in cardiac cells.

of α_1 -adrenoceptor agonists.

Unlike traditional "Ca²⁺ sensitizers" which directly

the transmembrane potential because, when Purkinje

bind to contractile proteins, α_1 -adrenoceptor agonists fibers are depolariz Cardiac rhythm is driven by pacemaker cells localized
in specific areas of cardiac muscle, the sinoatrial and atrioventricular nodes. These cells are characterized by prising knowing that α_1 -adrenoceptor stimulation modulates several ionic currents present in cardiac cells.
Cardiac rhythm is driven by pacemaker cells localized
in specific areas of cardiac muscle, the sinoatrial and Cardiac rhythm is driven by pacemaker cells localized
in specific areas of cardiac muscle, the sinoatrial and
atrioventricular nodes. These cells are characterized by
spontaneous depolarizations. The lack of an effect of It specific areas of catual muscle, the sinoatrial and
atrioventricular nodes. These cells are characterized by
spontaneous depolarizations. The lack of an effect of α_1 -
adrenoceptor agonists do not alter the pacemake spontaneous depotarizations. The fact of an effect of α_1 -
adrenoceptor agonists on heart rate is probably due to
the fact that these agents do not alter the pacemaker
rate of the sinoatrial node (Hewett and Rosen, 198 the fact that these agents do not after the pacemaker
rate of the sinoatrial node (Hewett and Rosen, 1985).
Although α_1 -adrenoceptor agonists do not change the
nodal rhythm, they do modulate the automaticity of
latent Although α_1 -adrenoceptor agonists do not channodal rhythm, they do modulate the automatic latent pacemaker cells, such as isolated Purkinji (for review, see Rosen et al., 1989). The α_1 -adreno induced modulation of Athough α_1 -autenoceptor agomets do not enange the
nodal rhythm, they do modulate the automaticity of
latent pacemaker cells, such as isolated Purkinje fibers
(for review, see Rosen et al., 1989). The α_1 -adrenocept from the transmembrane potential because, when Purkinje fibers
(for review, see Rosen et al., 1989). The α_1 -adrenoceptor-
induced modulation of rhythm apparently depends on
the transmembrane potential because, when Pu facemeter centers, such as isolated Furking fibers (for review, see Rosen et al., 1989). The α_1 -adrenoceptor-
induced modulation of rhythm apparently depends on
the transmembrane potential because, when Purkinje
fiber (for review, see rosen et al., 1989). The α_1 -adrenoceptor-
induced modulation of rhythm apparently depends on
the transmembrane potential because, when Purkinje
fibers are depolarized to membrane potentials similar to induced modulation of rhythm apparently depends on
the transmembrane potential because, when Purkinje
fibers are depolarized to membrane potentials similar to
those normally found in cells of the sinoatrial node, α_1 -
 the transmembrane potential because, when Purkinje
fibers are depolarized to membrane potentials similar to
those normally found in cells of the sinoatrial node, α_1 -
adrenergic stimulation loses its ability to modulat fibers are depolarized to mem
those normally found in cells
adrenergic stimulation loses is
automaticity of Purkinje fibers
Rosen and Robinson, 1990).
 α_1 -Adrenergic agonists incr be a formally found in cents of the sinoatrial hode, as

irenergic stimulation loses its ability to modulate the

tomaticity of Purkinje fibers (Hewett and Rosen, 198

osen and Robinson, 1990).
 α_1 -Adrenergic agonists

autemergic stimulation loses its ability to inotuate the
automaticity of Purkinje fibers (Hewett and Rosen, 1985;
Rosen and Robinson, 1990).
 α_1 -Adrenergic agonists increase or decrease the auto-
maticity of isolated (depending on Turkinje inters (riewelt and rosen, 1966)
Rosen and Robinson, 1990).
 α_1 -Adrenergic agonists increase or decrease the auto-
maticity of isolated (normally polarized) Purkinje fibers
depending on the stage rosen and Robinson, 1990).
 α_1 -Adrenergic agonists increase or decrease the auto-

maticity of isolated (normally polarized) Purkinje fibers,

depending on the stage of development and on the spe-

cific subset of fib α_1 -Adrenergic agonists increase or decrease the auto-
maticity of isolated (normally polarized) Purkinje fibers,
depending on the stage of development and on the spe-
cific subset of fibers. The majority of adult Purk maticity of isolated (normally polarized) Purking fiber
depending on the stage of development and on the sp
cific subset of fibers. The majority of adult Purkin
fibers exposed to phenylephrine exhibit a decrease
spontaneo depending on the stage of development and on the specific subset of fibers. The majority of adult Purkinje fibers exposed to phenylephrine exhibit a decrease in spontaneous firing rate. By contrast, α_1 -adrenoceptor st fibers exposed to phenylephrine exhibit a decrease in spontaneous firing rate. By contrast, α_1 -adrenoceptor stimulation in immature Purkinje fibers usually produces an increase in automaticity. When neonatal rat cardi fibers exposed to phenylephrine exhibit a decrease in
spontaneous firing rate. By contrast, α_1 -adrenoceptor
stimulation in immature Purkinje fibers usually produces
an increase in automaticity. When neonatal rat cardi spontaneous firing rate. By contrast, α_1 -adrenoceptor
stimulation in immature Purkinje fibers usually produces
an increase in automaticity. When neonatal rat cardiac
myocytes were cocultured with sympathetic ganglioni stimulation in immature Purkinje fibers usually produce an increase in automaticity. When neonatal rat card myocytes were cocultured with sympathetic ganglion cells, α_1 -adrenoceptor agonists produced a negat chronotro an increase in automaticity. When heonatal rat cardiac myocytes were cocultured with sympathetic ganglionic cells, α_1 -adrenoceptor agonists produced a negative chronotropic effect rather than the usual positive chrono

aspet

164 TERZIC 1

like chronotropic response to α_1 -adrenoceptor agonists

(Malfatto et al., 1990; for review, see Rosen et al., 1989, 164

like chronotropic response to α_1 -adrenoceptor agonists

(Malfatto et al., 1990; for review, see Rosen et al., 1989,

1991). 1991). In the chronotropic response to α_1 -adrenoceptor agonists falfatto et al., 1990; for review, see Rosen et al., 1989, 91).
In the adult postinnervated heart tissue, a pertussis xin-sensitive 41-kDa G-protein links the

like chronotropic response to α_1 -adrenoceptor ago (Malfatto et al., 1990; for review, see Rosen et al., 1991).
In the adult postinnervated heart tissue, a pert toxin-sensitive 41-kDa G-protein links the α_1 -adrenot (Malfatto et al., 1990; for review, see Rosen et al., 1989, 1991).

In the adult postinnervated heart tissue, a pertussis

toxin-sensitive 41-kDa G-protein links the α_1 -adrenoceptor

to negative chronotropy through a 1991).

In the adult postinnervated heart tissue, a pertussis

toxin-sensitive 41-kDa G-protein links the α_1 -adrenocep-

tor to negative chronotropy through a mechanism that

involves activation of the Na⁺/K⁺-ATPa In the adult postinnervated heart tissue, a pertussis ad
toxin-sensitive 41-kDa G-protein links the α_1 -adrenocep-
tor to negative chronotropy through a mechanism that (C
involves activation of the Na⁺/K⁺-ATPase (S toxin-sensitive 41-kDa G-protein links the α_1 -adrenoceptor to negative chronotropy through a mechanism that (involves activation of the Na⁺/K⁺-ATPase (Steinberg et 1 al., 1985; Shah et al., 1988; Rosen et al., 198 tor to negative chronotropy through a mechanism that
involves activation of the Na⁺/K⁺-ATPase (Steinberg et
al., 1985; Shah et al., 1988; Rosen et al., 1989). In the
newborn heart, the α_1 -adrenoceptor is coupled t involves activation of the Na⁺/K⁺-ATPase (Steinberg al., 1985; Shah et al., 1988; Rosen et al., 1989). In the mewborn heart, the α_1 -adrenoceptor is coupled to positic chronotropy via a pertussis toxin-insensitive al., 1985; Shah et al., 1988; Rosen et al., 1989). In the no
newborn heart, the α_1 -adrenoceptor is coupled to positive my
chronotropy via a pertussis toxin-insensitive G-protein et
(Han et al., 1989). The acquisition newborn heart, the α_1 -adrenoceptor is coupled to positive
chronotropy via a pertussis toxin-insensitive G-protein
(Han et al., 1989). The acquisition of the pertussis toxin-
sensitive G-protein depends on the maturati chronotropy via a pertussis toxin-insensitive G-protein et a
(Han et al., 1989). The acquisition of the pertussis toxin-
sensitive G-protein depends on the maturation of the zati
sympathetic innervation. This provides an (Han et al., 1989). The acquisition of the pertussis toxin-
sensitive G-protein depends on the maturation of the
sympathetic innervation. This provides an explanation
for the ontogenic change in the α_1 -adrenergic effe sensitive G-protein depends on the maturation of the sympathetic innervation. This provides an explanation for the ontogenic change in the α_1 -adrenergic effects on the chronotropic response from excitation (in newborn sympathetic innervation. This provides an explanation fifter the ontogenic change in the α_1 -adrenergic effects on due the chronotropic response from excitation (in newborn) 1901). Neuropeptide Y, which is simultaneous for the ontogenic change in the α_1 -adrenergic effects on
the chronotropic response from excitation (in newborn)
to inhibition (in adult) (Drugge et al., 1985; Rosen et al.
1991). Neuropeptide Y, which is simultaneousl the emonotropic response from excitation (in newborn) is
to inhibition (in adult) (Drugge et al., 1985; Rosen et al., ki
1991). Neuropeptide Y, which is simultaneously released ei
with norepinephrine from the sympathetic n w initiation (in addit) (Drugge et al., 1980, Rosen et al., 1991). Neuropeptide Y, which is simultaneously released exith norepinephrine from the sympathetic nerve endings, is probably responsible for the expression of the 1991). Neuropeptide Y, which is simultaneously released eiverth norepinephrine from the sympathetic nerve end-
ings, is probably responsible for the expression of the the
pertussis toxin-sensitive G-protein (reviewed by Ro with norepinephrine from the sympathetic nerve end-
ings, is probably responsible for the expression of the
pertussis toxin-sensitive G-protein (reviewed by Rosen al.,
and Robinson, 1990) and, thus, could be the mediator o ings, is probably responsible for the expression
pertussis toxin-sensitive G-protein (reviewed by
and Robinson, 1990) and, thus, could be the media
the change in chronotropic response from posit
neonates to negative in ad rtussis toxin-sensitive G-protein (reviewed by Rosen
d Robinson, 1990) and, thus, could be the mediator of
e change in chronotropic response from positive in
onates to negative in adults (Sun et al., 1991).
Both types of

and Robinson, 1990) and, thus, could be the mediator of
the change in chronotropic response from positive in
neonates to negative in adults (Sun et al., 1991).
Both types of responses to α_1 -adrenoceptor agonists
are b the change in chronotropic response from positive in pect
neonates to negative in adults (Sun et al., 1991). In 1
Both types of responses to α_1 -adrenoceptor agonists Ca^2
are blocked by the α_1 -adrenoceptor antago meonates to negative in adults (Sun et al., 1991).
Both types of responses to α_1 -adrenoceptor agonists (are blocked by the α_1 -adrenoceptor antagonist, prazosin.
In addition, the decrease in automaticity is blocked Both types of responses to α_1 -adrenoceptor agonist
are blocked by the α_1 -adrenoceptor antagonist, prazosin
In addition, the decrease in automaticity is blocked by
CEC, an α_{1B} -selective antagonist, whereas the are blocked by the α_1 -adrenoceptor antagonist, prazosin.
In addition, the decrease in automaticity is blocked by
CEC, an α_{1B} -selective antagonist, whereas the increase
in automaticity is antagonized by the α_{1A In addition, the decrease in automaticity is blocked by CEC, an α_{1B} -selective antagonist, whereas the increase in automaticity is antagonized by the α_{1A} -blocker, WB-4101 (del Balzo et al., 1990). These findings in automaticity is antagonist, whereas the increase during in automaticity is antagonized by the α_{1A} -blocker, WB-
4101 (del Balzo et al., 1990). These findings suggest that (Za:
sponses (Rosen et al., 1991). after al

strimulation of the Na⁺/K⁺ pump, generation of a net
specific receptor subtypes may modulate different re-
sponses (Rosen et al., 1991). af
stimulation of the Na⁺/K⁺ pump, generation of a net
coutward current, and sponses (Rosen et al., 1991). af

Evidence has been gathered to link the α_{1B} -receptor to α_1

stimulation of the Na⁺/K⁺ pump, generation of a net

outward current, and suppression of automaticity (Rosen se

et Evidence has been gathered to link the α_{1B} -receptor to α_1
stimulation of the Na⁺/K⁺ pump, generation of a net tio
outward current, and suppression of automaticity (Rosen sel
et al., 1989; Shah et al., 1988; Z stimulation of the Na⁺/K⁺ pump, generation of a net
outward current, and suppression of automaticity (Rosen
et al., 1989; Shah et al., 1988; Zaza et al., 1990). The
relationship between α_{1A} -receptor stimulation w outward current, and suppression of automaticity (Rosen sele
et al., 1989; Shah et al., 1988; Zaza et al., 1990). The Mol
relationship between α_{1A} -receptor stimulation which the
triggers the increase in automaticity et al., 1585, Shan et al., 1586, Zaza et al., 1590). The
relationship between α_{1A} -receptor stimulation which
triggers the increase in automaticity and PI hydrolysis
also has been established. However, the role of the relationship between α_{1A} -receptor stimulation which
triggers the increase in automaticity and PI hydrolysis
also has been established. However, the role of the PI
system in the increase of cardiac automaticity is sti triggers the increase in au
also has been established.
system in the increase of
unclear (del Balzo et al., 1
1990; Rosen et al., 1991). **Example 18 in the increase of cardiac automaticity is unclear (del Balzo et al., 1990; Molina-Viamonte et 1990; Rosen et al., 1991).**
C. Arrhythmogenic and Other Detrimental Effects
 α_1 -Adrenergic mechanisms not onl

1990; Rosen et al., 1991).
C. Arrhythmogenic and Other Detrimental Effects
 α_1 -Adrenergic mechanisms not only influence the au-
tomaticity of latent pacemakers but also play a role in 1990; Rosen et al., 1991). tive

C. Arrhythmogenic and Other Detrimental Effects
 α_1 -Adrenergic mechanisms not only influence the au-

tomaticity of latent pacemakers but also play a role in fibe

the genesis of speci C. Arrhythmogenic and Other Detrimental Effects
 α_1 -Adrenergic mechanisms not only influence the automaticity of latent pacemakers but also play a role in

the genesis of specific arrhythmias (Sheridan, 1986).

Eviden C. Arrnythmogenic and Other Detrimental Effects
 α_1 -Adrenergic mechanisms not only influence the

tomaticity of latent pacemakers but also play a rc

the genesis of specific arrhythmias (Sheridan, 1

Evidence has been α_1 -Adrenergic mechanisms not only influence the automaticity of latent pacemakers but also play a role in the genesis of specific arrhythmias (Sheridan, 1986). Evidence has been obtained to implicate α_1 -adrenocept tomaticity of latent pacemakers but also play a role in
the genesis of specific arrhythmias (Sheridan, 1986).
Evidence has been obtained to implicate α_1 -adrenocep-
tors, at least in some species, in the arrhythmias th Evidence has been obtained to implicate α_1 -adrenoceptors, at least in some species, in the arrhythmias that occur during coronary artery occlusion and reperfusion (for review, see Benfey, 1987; Kurtz et al., 1991). $\$ tors, at least in some species, in the arrhythmias that occur during coronary artery occlusion and reperfusion (for review, see Benfey, 1987; Kurtz et al., 1991). α_1 -Adrenoceptor blockade reduces the number of prematu occur during coronary artery occlusion and reperfusion (for review, see Benfey, 1987; Kurtz et al., 1991).
Adrenoceptor blockade reduces the number of premativentricular complexes during coronary reperfusion, duces or abol (for review, see Benfey, 1987; Kurtz et al., 1991). α_1 -
Adrenoceptor blockade reduces the number of premature the ventricular complexes during coronary reperfusion, re-
duces or abolishes ventricular tachycardia and f Adrenoceptor blockade reduces the number of premature
ventricular complexes during coronary reperfusion, re-
duces or abolishes ventricular tachycardia and fibrilla-
tion, and prevents the increase in idioventricular rate

FT AL.
adrenoceptor agonists increase idioventricular rate early
after reperfusion in animals depleted of myocardial cat-ET AL.
adrenoceptor agonists increase idioventricular rate early
after reperfusion in animals depleted of myocardial cat-
echolamines (Sheridan et al., 1980). The enhanced α_1 exhibitance of a setting adventuance of a setter reperfusion in animals depleted of myocardial catedral enhanced *a*₁-echolamines (Sheridan et al., 1980). The enhanced α_1 -adrenergic responsiveness is associated with adrenoceptor agonists increase idioventricular rate early
after reperfusion in animals depleted of myocardial cat-
echolamines (Sheridan et al., 1980). The enhanced α_1 -
adrenergic responsiveness is associated with a r adrenoceptor agonists increase idioventricular rate early
after reperfusion in animals depleted of myocardial cat
echolamines (Sheridan et al., 1980). The enhanced α_1
adrenergic responsiveness is associated with a rev after reperfusion in animals depleted of myocardial cat-
echolamines (Sheridan et al., 1980). The enhanced α_1 -
adrenergic responsiveness is associated with a reversible
increase in the number of myocardial α_1 -adre echolamines (Sheridan et al., 1980). The enhanced α_1 -
adrenergic responsiveness is associated with a reversible
increase in the number of myocardial α_1 -adrenoceptors
(Corr et al., 1981; Heathers et al., 1987; Dill adrenergic responsiveness is associated with a reversible
increase in the number of myocardial α_1 -adrenoceptors
(Corr et al., 1981; Heathers et al., 1987; Dillon et al.,
1988; Kurtz et al., 1991). However, α_1 -adre increase in the number of myocardial α_1 -adrenoceptors (Corr et al., 1981; Heathers et al., 1987; Dillon et al., 1988; Kurtz et al., 1991). However, α_1 -adrenoceptors are not consistently elevated in all experimenta 1988; Kurtz et al., 1991). However, α_1 -adrenoceptors are not consistently elevated in all experimental models of myocardial ischemia (Dillon et al., 1988; Chess-Williams et al., 1990; Steinberg and Alter, 1993).

The α_1 -adrenoceptor-triggered delayed afterdepolarinot consistently elevated in all experimental models of
myocardial ischemia (Dillon et al., 1988; Chess-Williams
et al., 1990; Steinberg and Alter, 1993).
The α_1 -adrenoceptor-triggered delayed afterdepolari-
zations w myocardial ischemia (Dillon et al., 1988; Chess-Williams
et al., 1990; Steinberg and Alter, 1993).
The α_1 -adrenoceptor-triggered delayed afterdepolari-
zations were often observed in Ca²⁺-overloaded Purkinje
fibers et al., 1990; Steinberg and Alter, 1993).
The α_1 -adrenoceptor-triggered delayed afterdepolarizations were often observed in Ca²⁺-overloaded Purking
fibers during ischemia when O₂ availability is severel
decreased The α_1 -adrenoceptor-triggered delayed afterdepolarizations were often observed in Ca²⁺-overloaded Purkinje
fibers during ischemia when O_2 availability is severely
decreased (Kimura et al., 1984; Boutjdir and El-S fibers during ischemia when O_2 availability is severely
decreased (Kimura et al., 1984; Boutjdir and El-Sheriff,
1991). In contrast, in normoxic cardiomyocytes or Pur-
kinje fibers, α_1 -adrenergic stimulation failed decreased (Kimura et al., 1984; Boutjdir and El-Sheriff;

1991). In contrast, in normosic cartiomyocytes or Pur-

kinje fibers, α_1 -adrenergic stimulation failed to induce

either early or delayed afterdepolarizations decreased (Kimura et al., 1984; Boutjdir and El-Sheriff, 1991). In contrast, in normoxic cardiomyocytes or Purkinje fibers, α_1 -adrenergic stimulation failed to induce either early or delayed afterdepolarizations (Prio 1991). In contrast, in normoxic cardiomyocytes or Purkinje fibers, α_1 -adrenergic stimulation failed to induce either early or delayed afterdepolarizations (Priori and Corr, 1990; Marchi et al., 1991) even though it de kinje fibers, α_1 -adrenergic stimulation failed to ind
either early or delayed afterdepolarizations (Priori a
Corr, 1990; Marchi et al., 1991) even though it decrea
the threshold for ventricular fibrillation (Thandroye corr, 1990; Marchi et al., 1991) even though it decreased
the threshold for ventricular fibrillation (Thandroyen et
al., 1987). During reperfusion, α_1 -adrenoceptor stimula-
tion, by activating the Na⁺/H⁺ antiport, the threshold for ventricular fibrillation (Thandroyen et al., 1987). During reperfusion, α_1 -adrenoceptor stimulation, by activating the Na⁺/H⁺ antiport, could be expected to increase the intracellular Na⁺ conce al., 1987). During reperfusion, α_1 -adrenoceptor stimulation, by activating the Na⁺/H⁺ antiport, could be expected to increase the intracellular Na⁺ concentration In turn, an increase in intracellular Na⁺ could tion, by activating the Na⁺/H⁺ antiport, could be ex-
pected to increase the intracellular Na⁺ concentration.
In turn, an increase in intracellular Na⁺ could lead to
Ca²⁺ overload by a net uptake of Ca²⁺ via t pected to increase the intracellular Na⁺ concentration.
In turn, an increase in intracellular Na⁺ could lead to
Ca²⁺ overload by a net uptake of Ca²⁺ via the Na⁺/Ca²⁺
exchange. Although this cascade of events In turn, an increase in intracellular Na⁺ could lead to Ca²⁺ overload by a net uptake of Ca²⁺ via the Na⁺/Ca²⁺ exchange. Although this cascade of events might be responsible for arrhythmias (Dennis et al., 1990) Ca²⁺ overload by a net uptake of Ca²⁺ via the Na⁺/Ca²⁺ exchange. Although this cascade of events might be responsible for arrhythmias (Dennis et al., 1990), α_1 -adrenoceptor agonists have not been shown to incr exchange. Although this cascade of responsible for arrhythmias (Dennis adrenoceptor agonists have not been s
intracellular Na⁺ unless the Na⁺/K⁺ p (Zaza et al., 1990; Terzic et al., 1991).
Automatic arrhythmias, as Automatic arrhythmias, (being et al., 1990), a_1 -
adrenoceptor agonists have not been shown to increase
intracellular Na⁺ unless the Na⁺/K⁺ pump is inhibited
(Zaza et al., 1990); Terzic et al., 1991).
Automatic ar

(Zaza et al., 1990; Terzic et al., 1991).
Automatic arrhythmias, as well as induced delayed
afterdepolarizations and triggered activity, produced by
 α_1 -adrenoceptor agonists in simulated ischemic condi-
tions, are sig (*Laza* et al., 1990, 1erzic et al., 1991).

Automatic arrhythmias, as well as induced delayed

afterdepolarizations and triggered activity, produced by
 α_1 -adrenoceptor agonists in simulated ischemic condi-

tions, a afterdepolarizations and triggered activity, produced by α_1 -adrenoceptor agonists in simulated ischemic conditions, are significantly reduced by WB-4101, a rather selective α_{1A} -antagonist (Anyukhovsky and Rosen, α_1 -adrenoceptor agonists in simulated ischemic condi-
tions, are significantly reduced by WB-4101, a rather
selective α_{1A} -antagonist (Anyukhovsky and Rosen, 1991;
Molina-Viamonte et al., 1991). These results emph clons, are significantly reduced by WB-4101, a rathe
selective α_{1A} -antagonist (Anyukhovsky and Rosen, 1991
Molina-Viamonte et al., 1991). These results emphasiz
the role of a WB-4101-sensitive receptor subtype is
isc Selective α_{1A} -antagonist (Anyukhovsky and Rosen, 1991;
Molina-Viamonte et al., 1991). These results emphasize
the role of a WB-4101-sensitive receptor subtype in
ischemic arrhythmias and the potential antiarrhythmic
 From all the role of a WB-4101-sensitive receptor subtype in
ischemic arrhythmias and the potential antiarrhythmic
ability for α_1 -receptor subtype-selective blockade (Rosen
et al., 1991). The increase in abnormal auto ischemic arrhythmias and the potential antiarrh
ischemic arrhythmias and the potential antiarrh
ability for α_1 -receptor subtype-selective blockade
et al., 1991). The increase in abnormal automati
ischemic Purkinje fib scheme arrhythmas and the potential antiarrhythmic
ability for α_1 -receptor subtype-selective blockade (Rosen
et al., 1991). The increase in abnormal automaticity in
ischemic Purkinje fibers depends on a WB-4101-sensiet al., 1991). The increase in abnormal automaticity
ischemic Purkinje fibers depends on a WB-4101-sen
tive α_1 -adrenoceptor subtype whose actions are tran
duced by a pertussis toxin-sensitive 41-kDa G-prot
and should ischemic Purkinje fibers depends on a WB-4101-sensitive α_1 -adrenoceptor subtype whose actions are trans-
duced by a pertussis toxin-sensitive 41-kDa G-protein
and should be distinguished from the mechanism under-
lyin duced by a pertussis toxin-sensitive 41-kDa G-protein
and should be distinguished from the mechanism under-
lying the increase in automaticity in normal Purkinje
fibers, which is independent of the pertussis toxin sub-
str and should be distinguished from the mechanism underlying the increase in automaticity in normal Purkinje fibers, which is independent of the pertussis toxin substrate (Anyukhovsky et al., 1992).
Stimulation of cardiac $\$ In should be ustinguished from the mechanism under-
ing the increase in automaticity in normal Purkinje
bers, which is independent of the pertussis toxin sub-
rate (Anyukhovsky et al., 1992).
Stimulation of cardiac α_1

ventricular complexes during coronary reperfusion, re-
duces or abolishes ventricular tachycardia and fibrilla-
duces or abolishes ventricular tachycardia and fibrilla-
tion, and prevents the increase in idioventricular r potentiates the development of the pertussis toxin su
strate (Anyukhovsky et al., 1992).
Stimulation of cardiac α_1 -adrenoceptors hastens an
potentiates the development of digitalis glycoside card
otoxicity, as reporte fibers, which is independent of the pertussis toxin sub-
strate (Anyukhovsky et al., 1992).
Stimulation of cardiac α_1 -adrenoceptors hastens and
potentiates the development of digitalis glycoside cardi-
otoxicity, as r strate (Anyukhovsky et al., 1992).

Stimulation of cardiac α_1 -adrenoceptors hastens and

potentiates the development of digitalis glycoside cardi-

otoxicity, as reported for isolated rat atria (Terzic and

Vogel, 199 potentiates the development of digitalis glycoside cardiotoxicity, as reported for isolated rat atria (Terzic and Vogel, 1990; Terzic et al., 1991). It has been proposed that the enhancement of digitalis cardiotoxicity is potentiates the development of digitalis gives
identify discussed care of oxicity, as reported for isolated rat atria (Terzic at
Vogel, 1990; Terzic et al., 1991). It has been propose
that the enhancement of digitalis car bookiety, as reported for isolated rat atria (1 erzic and Vogel, 1990; Terzic et al., 1991). It has been proposed that the enhancement of digitalis cardiotoxicity is due to the stimulation of Na⁺/H⁺ exchange by α_1 voger, 1990, 1erzic et al., 1991). It has been proposed
that the enhancement of digitalis cardiotoxicity is due to
the stimulation of Na⁺/H⁺ exchange by α_1 -adrenoceptor
agonists. Indeed, the Na⁺/H⁺ antiport pr the stimulation of Na^+/H^+ exchange by α_1 -adrenoceptor agonists. Indeed, the Na^+/H^+ antiport provides an important route of Na^+ loading (and, subsequently, Ca^{2+} loading) in conditions in which t

CARDIAC α_1 -AD
1988; Kim and Smith, 1986; Kaila and Vaughan Jones,
1987). By stimulating the Na⁺/H⁺ antiport, α_1 -agonists CARDIAC α_1 -AD
1988; Kim and Smith, 1986; Kaila and Vaughan Jones,
1987). By stimulating the Na⁺/H⁺ antiport, α_1 -agonists
may aggravate digitalis-induced contractures by increas-CARDIAC α
1988; Kim and Smith, 1986; Kaila and Vaughan Jor
1987). By stimulating the Na⁺/H⁺ antiport, α_1 -agoni
may aggravate digitalis-induced contractures by incre
ing both intracellular Na⁺ and pH. In this 1988; Kim and Smith, 1986; Kaila and Vaughan Jones, n
1987). By stimulating the Na⁺/H⁺ antiport, α_1 -agonists timay aggravate digitalis-induced contractures by increas-
ing both intracellular Na⁺ and pH. In this 1988; Kim and Smith, 1986; Kaila and Vaughan Jones, 1987). By stimulating the Na⁺/H⁺ antiport, α_1 -agonists may aggravate digitalis-induced contractures by increasing both intracellular Na⁺ and pH. In this regard may aggravate digitalis-induced contractures by increasing both intracellular Na⁺ and pH. In this regard, α_1 -
adrenoceptor agonists exert an opposite modulatory ef-
fect on ouabain cardiotoxicity when compared to Na may aggravate digitalis-induced contractures by increas-
ing both intracellular Na⁺ and pH. In this regard, α_1 - cy
adrenoceptor agonists exert an opposite modulatory ef-
fect on ouabain cardiotoxicity when compared adrenoceptor agonists exert an opposite modulatory effect on ouabain cardiotoxicity when compared to Na⁺/
H⁺ exchange blockers (Terzic et al., 1991). The delayed
afterdepolarizations induced by ouabain in canine Pur-
 adrenoceptor agonists exert an opposite modulatory ef-
fect on ouabain cardiotoxicity when compared to Na⁺/ tur
H⁺ exchange blockers (Terzic et al., 1991). The delayed α_1 -
afterdepolarizations induced by ouabain i fect on ouabain
H⁺ exchange b
afterdepolariza
kinje fibers are
Rosen, 1993). afterdepolarizations induced by ouabain in canine Pushinje fibers are also worsened by α_1 -stimulation (Lee an Rosen, 1993).
D. Induction of Gene Expression and Stimulation of Hypertrophy

Hypertrophy

Simpson, 1993).
Induction of Gene Expression and Stimulation of
ppertrophy
Simpson (1983, 1985; for review, see Simpson et al.,
91) demonstrated that, in cultured neonatal rat car-1991) D. Induction of Gene Expression and Stimulation of Hypertrophy

1991) demonstrated that, in cultured neonatal rat car-

1991) demonstrated that, in cultured neonatal rat car-

1991) demonstrated that, in cultured ne divergence of the Expression and Stimulation of
Hypertrophy
Simpson (1983, 1985; for review, see Simpson et al.,
1991) demonstrated that, in cultured neonatal rat car-
diomyocytes, norepinephrine, via α_1 -adrenoceptors may

duces cell hypertrophy.

duces cell hypertrophy. Because cardiomyocytes which

duces cell hypertrophy. Because cardiomyocytes which

duces cell hypertrophy. Because cardiomyocytes which

duces cell hypertrophy. Becau Simpson (1983, 1985; for review, see Simpson et al., 1991) demonstrated that, in cultured neonatal rat cardiomyocytes, norepinephrine, via α_1 -adrenoceptors, induces cell hypertrophy. Because cardiomyocytes which are h 1991) demonstrated that, in cultured neonatal rat car-
diomyocytes, norepinephrine, via α_1 -adrenoceptors, in-
duces cell hypertrophy. Because cardiomyocytes which
are highly differentiated are no longer able to divide diomyocytes, norepinephrine, via α_1 -adrenoceptors, duces cell hypertrophy. Because cardiomyocytes where highly differentiated are no longer able to div cardiac hypertrophy results primarily from an incre in protein co duces cell hypertrophy. Because cardiomyocytes which are highly differentiated are no longer able to divide, teardiac hypertrophy results primarily from an increase (in protein content and, hence, in cell size. The hypert are highly differentiated are no longer able to divident cardiac hypertrophy results primarily from an increase in protein content and, hence, in cell size. The hypertrophy produced by α_1 -adrenergic stimulation is ass cardiac hypertrophy results primarily from an increase
in protein content and, hence, in cell size. The hypertro-
phy produced by α_1 -adrenergic stimulation is associated
with an increase in myofibrillar protein synthe in protein content and, hence, in cell size. The hypertro-
phy produced by α_1 -adrenergic stimulation is associated
with an increase in myofibrillar protein synthesis with-
out an effect on protein degradation (Meidell phy produced by α_1 -adrenergic stimulation is associated
with an increase in myofibrillar protein synthesis with-
out an effect on protein degradation (Meidell et al., 1986).
Such an increase in protein content of cult with an increase in myofibrillar protein synthesis with-
out an effect on protein degradation (Meidell et al., 1986). and
Such an increase in protein content of cultured neonatal cor-
rat cardiac myocytes was inhibited by out an effect on protein degradation (Meidell et al., 19
Such an increase in protein content of cultured neon
rat cardiac myocytes was inhibited by WB-4101, an
antagonist, to nearly the same extent as by prazos
nonselecti Such an increase in protein content of cultured neonatal
rat cardiac myocytes was inhibited by WB-4101, an α_{1A} -
antagonist, to nearly the same extent as by prazosin a
nonselective α_1 -adrenergic antagonist. The $\$ rat cardiac myocytes was inhibited by WB-4101, an α_{1A} -
antagonist, to nearly the same extent as by prazosin a
nonselective α_1 -adrenergic antagonist. The α_{1A} -antago-
nist also inhibited the norepinephrine-ind antagonist, to nearly the same extent as by prazosi
nonselective α_1 -adrenergic antagonist. The α_{1A} -anta
nist also inhibited the norepinephrine-induced incre
in [³H]inositol phosphates so that phosphoinosi
phosp nonselective α_1 -adrenergic antagonist. The α_{1A} -antagonist also inhibited the norepinephrine-induced increase
in [³H]inositol phosphates so that phosphoinositide
phospholipase C seems to be involved in the " $\alpha_$ nist also inhibited the norepinephrine-induced increasing in $[^3H]$ inositol phosphates so that phosphoinosi phospholipase C seems to be involved in the " α_1 -hy trophic" response (Simpson et al., 1990). In contraction in [³H]inositol phosphates so that phosphoinositide ca
phospholipase C seems to be involved in the " α_1 -hyper-
trophic" response (Simpson et al., 1990). In contrast, the
CEC, the α_{1B} -antagonist, had no effect. T trophic" response (Simpson et al., 1990). In contrast, CEC, the α_{1B} -antagonist, had no effect. The α_{1} -adrenotrophic" response (Simpson et al., 1990). In contrast, the CEC, the α_{1B} -antagonist, had no effect. The α_1 -adrenoceptor-mediated stimulation of protein synthesis is blocked by selective Na⁺/H⁺ exchange inhibit CEC, the a
ceptor-med
blocked by
gesting the
al., 1992).
Following blocked by selective Na^+/H^+ exchange inhibitors, suggesting the involvement of Na^+/H^+ exchange (Kagiya et al., 1992).
Following neurohormonal stimulation, cardiac hyper-

gesting the involvement of Na⁺/H⁺ exchange (Kagiya et sion of contractile protein genes.
al., 1992).
Following neurohormonal stimulation, cardiac hyper-
trophy proceeds through the following successive genetic The α gesting the involvement of Na⁺/H⁺ exchange (Kagiya et al., 1992).

Following neurohormonal stimulation, cardiac hyper-

trophy proceeds through the following successive genetic

events: (a) an immediate early gene expr al., 1992). Following neurohormonal stimulation, cardiac hypertrophy proceeds through the following successive genetic events: (*a*) an immediate early gene expression of protooncogenes, such as *c-myc*, *c-fos*, *Egr1*, Following neurohormonal stimulation, cardiac hyper-
trophy proceeds through the following successive genetic T
events: (*a*) an immediate early gene expression of pro-
tooncogenes, such as c-*myc*, c-*fos*, *Egr1*, c-*jun* trophy proceeds through the following successive genevents: (*a*) an immediate early gene expression of p tooncogenes, such as $c-myc$, $c-fos$, $Egr1$, $c-jun$, and j *B*. This genetic program occurs within 1 to 2 h and d not events: (*a*) an immediate early gene expression of pro-
tooncogenes, such as $c\text{-}myc$, $c\text{-}fos$, $Egr1$, $c\text{-}jun$, and $jun-B$. This genetic program occurs within 1 to 2 h and does
not require any protein synthesis. Most of tooncogenes, such as c-myc, c-fos, Egr1, c-jun, and jun-
B. This genetic program occurs within 1 to 2 h and does Ca
not require any protein synthesis. Most of these protoon-
to cogenes encode transcriptional factors (or r B. This genetic program occurs within 1 to 2 h and does Ca² not require any protein synthesis. Most of these protoon-
cogenes encode transcriptional factors (or related pro-
teins that behave as transcriptional factors) not require any protein synthesis. Most of these protoon-
cogenes encode transcriptional factors (or related pro-
teins that behave as transcriptional factors) that bind
firm DNA and activate the transcription machinery; cogenes encode transcriptional factors (or related pro-
teins that behave as transcriptional factors) that bind
fDNA and activate the transcription machinery; (b) a
expression of embryonic genes such as ANP, skeletal α DNA and activate the transcription machinery; (b) a *f* reactivation, within 24 h in neonatal cardiac cells, of the expression of embryonic genes such as ANP, skeletal α - n actin, and β -myosin heavy-chain genes; (c) reactivation, within 24 h in neonatal cardiac cells, of the expression of embryonic genes such as ANP, skeletal α -
actin, and β -myosin heavy-chain genes; (c) an up-regulation, within 24 and 48 h, of constitutively e expression of embryonic genes such as ANP, skeletal α -
actin, and β -myosin heavy-chain genes; (c) an up-regu-
lation, within 24 and 48 h, of constitutively expressed 2
contractile protein genes (MLC-2, cardiac α actin, and β -myosin heavy-chain genes; (c) an up-regulation, within 24 and 48 h, of constitutively expressed contractile protein genes (MLC-2, cardiac α -actin). It should be pointed out that the time course of these lation, within
contractile pr
should be point
genetic events
of hypertrophy.
 α_1 -Adrenerg ntractile protein genes (MLC-2, cardiac α -actin). It
ould be pointed out that the time course of these
netic events can vary between different in vivo models
hypertrophy.
 α_1 -Adrenergic stimulation triggers most of should be pointed out that the time course of these
genetic events can vary between different in vivo models
of hypertrophy.
 α_1 -Adrenergic stimulation triggers most of these ge-
netic events (table 2). More specifical

ENOCEPTORS
normally involved in cell proliferation and transfo
tion (Starksen et al., 1986; Ikeda et al., 1991). the income serve

the produced in cell proliferation and transforma-

tion (Starksen et al., 1986; Ikeda et al., 1991). The

induction of c-myc expression in cultured cardiac myoinduction of the *c-myc* expression of the *c-myc* expression in cultured cardiac mycrotes is rapid (maximum reached within 1 to 2 h) and the *c*-myc expression in cultured cardiac mycrotes is rapid (maximum reached within normally involved in cell proliferation and transforma-
tion (Starksen et al., 1986; Ikeda et al., 1991). The
induction of c-myc expression in cultured cardiac myo-
cytes is rapid (maximum reached within 1 to 2 h) and
shor normally involved in cell proliferation and transformation (Starksen et al., 1986; Ikeda et al., 1991). The induction of c-myc expression in cultured cardiac myocytes is rapid (maximum reached within 1 to 2 h) and short-li tion (Starksen et al., 1986; Ikeda et al., 1991). The
induction of c-myc expression in cultured cardiac myo-
cytes is rapid (maximum reached within 1 to 2 h) and
short-lived (by 6 h after stimulation, c-myc mRNA re-
turns cytes is rapid (maximum reached within 1 to 2 h) and
short-lived (by 6 h after stimulation, c-myc mRNA re-
turns to control levels). The mechanism by which the
 α_1 -adrenoceptor enhances c-myc expression is not
known. T turns to control levels). The mechanism by which the short-lived (by 6 h after stimulation, $c\text{-}myc$ mRNA returns to control levels). The mechanism by which the α_1 -adrenoceptor enhances $c\text{-}myc$ expression is not known. The PKC activator, phorbol-12-myristate, also in turns to control levels). The mechanism by which the α_1 -adrenoceptor enhances c-*myc* expression is not known. The PKC activator, phorbol-12-myristate, also increases the levels of c-*myc* mRNA and produces hypertroph α_1 -adrenoceptor enhances c-*myc* expression is not
known. The PKC activator, phorbol-12-myristate, also
increases the levels of c-*myc* mRNA and produces hy-
pertrophy in cultured cardiac myocytes (Starksen et al.,
19 known. The PKC activator, phorbol-12-myristate, alincreases the levels of c-myc mRNA and produces hertrophy in cultured cardiac myocytes (Starksen et all 1986). α_1 -Adrenoceptor agonists rapidly activate (with 15 to 30 increases the levels of c-*myc* mRNA and produces hypertrophy in cultured cardiac myocytes (Starksen et al., 1986). α_1 -Adrenoceptor agonists rapidly activate (within 15 to 30 min) the expression of two other protoonco 1986). α_1 -Adrenoceptor agonists rapidly activate (within 15 to 30 min) the expression of two other protooncogenes, namely, c-*fos* and c-*jun*, and the inducible zinc finger gene, *Egr-1*. These genes are involved in 1986). α_1 -Adrenoceptor agonists rapidly activate (within 15 to 30 min) the expression of two other protooncogenes, namely, c-fos and c-jun, and the inducible zinc finger gene, $Egr-1$. These genes are involved in the d 15 to 30 min) the expression of two other protoon
namely, c-fos and c-jun, and the inducible zir
gene, $Egr-1$. These genes are involved in the deve
of cell hypertrophy through a pertussis toxin-in
mechanism (Iwaki et al., namely, c-*fos* and c-*jun*, and the inducible zinc finger
gene, *Egr*-1. These genes are involved in the development
of cell hypertrophy through a pertussis toxin-insensitive
mechanism (Iwaki et al., 1990). Phorbol-12-my gene, *Egr-1*. These genes are involved in the development
of cell hypertrophy through a pertussis toxin-insensitive
mechanism (Iwaki et al., 1990). Phorbol-12-myristate-
13-acetate is also capable of inducing the expressi mechanism (Iwaki et al., 1990). Phorbol-12-myristate-
13-acetate is also capable of inducing the expression of
the protooncogenes c-fos and c-jun and the Egr-1 gene
(Dunnmon et al., 1990).
 α_1 -Adrenergic stimulation pr echanism (Iwaki et al., 1990). Phorbol-12-myristate-
-acetate is also capable of inducing the expression of
e protooncogenes c-fos and c-jun and the Egr-1 gene
bunnmon et al., 1990).
 α_1 -Adrenergic stimulation produces

13-acetate is also capable of inducing the expression of
the protooncogenes c-fos and c-jun and the Egr-1 gene
(Dunnmon et al., 1990).
 α_1 -Adrenergic stimulation produces a several-fold in-
crease in the number of sarc the protooncogenes c-fos and c-jun and the *Egr*-1 gene
(Dunnmon et al., 1990).
 α_1 -Adrenergic stimulation produces a several-fold in-
crease in the number of sarcomere units in the cellular
content of cardiac myofibri (Dunnmon et al., 1990).
 α_1 -Adrenergic stimulation produces a several-fold in-

crease in the number of sarcomere units in the cellular

content of cardiac myofibrillar genes (MLC-2, skeletal

and cardiac α -actin) α_1 -Adrenergic stimulation produces a several-fold in-
crease in the number of sarcomere units in the cellular
content of cardiac myofibrillar genes (MLC-2, skeletal
and cardiac α -actin) and in the steady-state leve crease in the number of sarcomere units in the cellul
content of cardiac myofibrillar genes (MLC-2, skelet
and cardiac α -actin) and in the steady-state levels of the
corresponding mRNA (Lee et al., 1988; Iwaki et al., content of cardiac myofibrillar genes (MLC-2, ske
and cardiac α -actin) and in the steady-state levels o
corresponding mRNA (Lee et al., 1988; Iwaki et al., 1
Bishopric et al., 1987; Long et al., 1989). Because p
ylephr and cardiac α -actin) and in the steady-state levels
corresponding mRNA (Lee et al., 1988; Iwaki et al.
Bishopric et al., 1987; Long et al., 1989). Because
ylephrine did not produce a similar effect in nonm
dial cells, corresponding mRNA (Lee et al., 1988; Iwaki et al., 1990;
Bishopric et al., 1987; Long et al., 1989). Because phen-
ylephrine did not produce a similar effect in nonmyocar-
dial cells, it was concluded that the α_1 -adr Bishopric et al., 1987; Long et al., 1989). Because phen-
ylephrine did not produce a similar effect in nonmyocar-
dial cells, it was concluded that the α_1 -adrenoceptor-
mediated increase in transcription activity is ylephrine did not produce a similar effect in nonmyocardial cells, it was concluded that the α_1 -adrenoceptor-
mediated increase in transcription activity is specific for
cardiac genes (Lee et al., 1988). The direct ac dial cells, it was concluded that the α_1 -adrenoceptor-
mediated increase in transcription activity is specific for
cardiac genes (Lee et al., 1988). The direct activation of
PKC by phorbol-12-myristate-13-acetate also mediated increase in transcription activity is specific for cardiac genes (Lee et al., 1988). The direct activation of PKC by phorbol-12-myristate-13-acetate also induces the expression of the MLC-2 gene and increases the cardiac genes (Lee et al., 1988). The direct activation of

PKC by phorbol-12-myristate-13-acetate also induces

the expression of the MLC-2 gene and increases the

accumulation of the contractile protein in neonatal cell PKC by phorbol-12-myristate-13-acetate also inductive expression of the MLC-2 gene and increases accumulation of the contractile protein in neonatal contramination of the contractile protein in neonatal colular protein et the expression of the MLC-2 generative of the contractile proton (Dunnmon et al., 1990). These doculd participate in the α_1 -adrenometric sion of contractile protein genes.
 α_1 -Adrenoceptor agonists are also cumulation of the contractile protein in neonatal cells
bunnmon et al., 1990). These data suggest that PKC
uld participate in the α_1 -adrenoceptor-induced expres-
on of contractile protein genes.
 α_1 -Adrenoceptor ag could participate in the α_1 -adrenoceptor-induced expression of contractile protein genes.
 α_1 -Adrenoceptor agonists are also potent activators of

genetic events can vary between different in vivo models same approach, these authors reported that cotransfec-
of hypertrophy.
 α_1 -Adrenergic stimulation triggers most of these ge-
 β -isozymes of PKC also increased could participate in the α_1 -adrenoceptor-induced expression of contractile protein genes.
 α_1 -Adrenoceptor agonists are also potent activators of

the expression of the ANP gene (Knowlton et al., 1991).

The α_1 sion of contractile protein genes.
 α_1 -Adrenoceptor agonists are also potent activators of

the expression of the ANP gene (Knowlton et al., 1991).

The α_1 -adrenoceptor induced coexpression of the gene
 Egr-1 co α_1 -Adrenoceptor agonists are also potent activators of
the expression of the ANP gene (Knowlton et al., 1991).
The α_1 -adrenoceptor induced coexpression of the gene
Egr-1 could play a role in the expression of cont The α_1 -adrenoceptor induced coexpression of the gene *Egr-1* could play a role in the expression of contractile proteins and ANP genes (Iwaki et al., 1990). PKC and *Egr-1* could play a role in the expression of contractile proteins and ANP genes (Iwaki et al., 1990). PKC and Ca^{2+} -calmodulin-dependent kinases have been reported to be involved in the α_1 -adrenoceptor-induced ANP *Egr-1* could play a role in the expression of contractile proteins and ANP genes (Iwaki et al., 1990). PKC and Ca^{2+} -calmodulin-dependent kinases have been reported to be involved in the α_1 -adrenoceptor-induced ANP proteins and ANP genes (Iwaki et al., 1990). PKC and Ca^{2+} -calmodulin-dependent kinases have been reported to be involved in the α_1 -adrenoceptor-induced ANP gene expression (Sei et al., 1991). Shubeita et al. (1992) to be involved in the α_1 -adrenoceptor-induced ANP gene
expression (Sei et al., 1991). Shubeita et al. (1992) con-
firmed that phenylephrine induces the expression of
ANP and MLC-2 genes. The α -agonist increased by to be involved in the α_1 -adrenoceptor-induced ANP gene
expression (Sei et al., 1991). Shubeita et al. (1992) con-
firmed that phenylephrine induces the expression of
ANP and MLC-2 genes. The α -agonist increased by expression (Sei et al., 1991). Shubeita et al. (1992) confirmed that phenylephrine induces the expression of ANP and MLC-2 genes. The α -agonist increased by 12-
and 5-fold the accumulation of the ANP and MLC-2
mRNA, re firmed that phenylephrine induces the expression ANP and MLC-2 genes. The α -agonist increased by 1 and 5-fold the accumulation of the ANP and MLC mRNA, respectively. Moreover, using neonatal myocyt transfected with con ANP and MLC-2 genes. The α -agonist increased by 12
and 5-fold the accumulation of the ANP and MLC-:
mRNA, respectively. Moreover, using neonatal myocyte
transfected with constructs containing the ANP or MLC
2 promoter and 5-fold the accumulation of the ANP and MLC-2 mRNA, respectively. Moreover, using neonatal myocytes transfected with constructs containing the ANP or MLC-2 promoter associated with the luciferase cDNA, Shubeita et al. (mRNA, respectively. Moreover, using neonatal myocytes
transfected with constructs containing the ANP or MLC-
2 promoter associated with the luciferase cDNA, Shu-
beita et al. (1992) observed an increase in the luciferase
a 2 promoter associated with the luciferase cDNA, Shubeita et al. (1992) observed an increase in the luciferase activity in phenylephrine-stimulated cells. Using the 2 promoter associated with the luciferase cDNA, Shubeita et al. (1992) observed an increase in the luciferase activity in phenylephrine-stimulated cells. Using the same approach, these authors reported that cotransfection beita et al. (1992) observed an increase in the luciferase activity in phenylephrine-stimulated cells. Using the same approach, these authors reported that cotransfection of vectors encoding constitutively active α - an activity in phenylephrine-stimulated cells. Using the
same approach, these authors reported that cotransfec-
tion of vectors encoding constitutively active α - and/or
 β -isozymes of PKC also increased the luciferase a same approach, these authors reported that cotransfection of vectors encoding constitutively active α - and/or β -isozymes of PKC also increased the luciferase activity.
This may suggest that the α - and/or β -iso

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

aspet

genes induced by α -adrenoceptor agonists. The α_{1A} -adre-noceptor-selective antagonist, (+)-niguldipine, inhibits Savetan d-actin: Esshophe

Cardiac α -actin: Long et al.

genes induced by α -adrenoceptor agonists. The α_{1A} -adre-

noceptor-selective antagonist, (+)-niguldipine, inhibits

the transcriptional activation of the genes induced by α -adrenoceptor agonists. The α_{1A} -adrenoceptor-selective antagonist, (+)-niguldipine, inhibits
the transcriptional activation of the ANP-luciferase fu-
sion gene. This suggests that cardiac α_{1A} genes induced by α -adrenoceptor agonists. The α_{1A} -adre-
noceptor-selective antagonist, (+)-niguldipine, inhibits we
the transcriptional activation of the ANP-luciferase fu-
sion gene. This suggests that cardiac $\$ genes induced by α -adrenoceptor agonists. The α_{1A} -adrenoceptor-selective antagonist, (+)-niguldipine, inhibits
the transcriptional activation of the ANP-luciferase fu-
sion gene. This suggests that cardiac α_{1A} noceptor-selective antagonist, $(+)$ -niguldipine, inhibits
the transcriptional activation of the ANP-luciferase fu-
sion gene. This suggests that cardiac α_{1A} may be involved
in the induction of embryonic gene expressi the transcriptional activation of the ANP-luciferase fusion gene. This suggests that cardiac α_{1A} may be involved
in the induction of embryonic gene expression in neo-
natal cells (Michel et al., 1990), which is in ag sion gene. This suggests that cardiac α_{1A} may be involved 19
in the induction of embryonic gene expression in neo-
natal cells (Michel et al., 1990), which is in agreement swith the finding that the α_{1A} -adrenoce in the induction of embryonic gene expression in neo-
natal cells (Michel et al., 1990), which is in agreement
with the finding that the α_{1A} -adrenoceptor mediates cell
hypertrophy (Simpson et al. 1990). The expressio natal cells (Michel et al., 1990), which is in agreement
with the finding that the α_{1A} -adrenoceptor mediates cell
hypertrophy (Simpson et al. 1990). The expression of
these embryonic genes occurs following a 24- to 4 hypertrophy (Simpson et al. 1990). The expression of these embryonic genes occurs following a 24- to 48-h α_1 -
adrenergic stimulation of neonatal cardiomyocytes. α_1 -
Adrenoceptor stimulation was recently shown to u these embryonic genes occurs following a 24- to 48-h α_1 - mained higher than in control animals during the devel-
adrenergic stimulation of neonatal cardiomyocytes. α_1 - opment of the hypertrophic stage; the authors these embryonic genes occurs following a 24- to 48-h α_1 -
adrenergic stimulation of neonatal cardiomyocytes. α_1 -
Adrenoceptor stimulation was recently shown to up reg-
ulate β -myosin heavy chain iso-mRNA (Waspe adrenergic stimulation of neon
Adrenoceptor stimulation was
ulate β -myosin heavy chain i
1990), probably through the sti
of PKC (Kariya et al., 1991).
In adult ventricular cells, α drenoceptor stimulation was recently shown to up reg-
ate β -myosin heavy chain iso-mRNA (Waspe et al.,
90), probably through the stimulation of the β -isozyme
PKC (Kariya et al., 1991).
In adult ventricular cells, $\$

ulate β -myosin heavy chain iso-mRNA (Waspe et al., 1990), probably through the stimulation of the β -isozyme of PKC (Kariya et al., 1991).
In adult ventricular cells, α -adrenoceptor agonists in-
duce the expressio 1990), probably through the stimulation of the β -isozyme
of PKC (Kariya et al., 1991).
In adult ventricular cells, α -adrenoceptor agonists in-
duce the expression of the 15-kDa protein "Id" (for
"inhibitor of DNA bi of PKC (Kariya et al., 1991).

In adult ventricular cells, α -adrenoceptor agonists in-

duce the expression of the 15-kDa protein "Id" (for

"inhibitor of DNA binding") (Springhorn et al., 1992).

This protein prevents In adult ventricular cells, α -adrenoceptor agonists in-
duce the expression of the 15-kDa protein "Id" (for
"inhibitor of DNA binding") (Springhorn et al., 1992).
This protein prevents the binding to DNA of muscle
pote duce the expression of the 15-kDa protein "Id" (for
"inhibitor of DNA binding") (Springhorn et al., 1992).
This protein prevents the binding to DNA of muscle A
potentiators of differentiation, such as myoD, myogenin,
and "inhibitor of DNA binding") (Springhorn et al., 1992).
This protein prevents the binding to DNA of muscle A.
potentiators of differentiation, such as myoD, myogenin,
and Mif5 (Benezra et al., 1990). These molecules serve
 This protein prevents the binding to DNA of muscle
potentiators of differentiation, such as myoD, myogenin,
and Mif5 (Benezra et al., 1990). These molecules serve
as tissue-specific transcriptional factors. It should be
p potentiators of differentiation, such as myoD, myogenin,
and Mif5 (Benezra et al., 1990). These molecules serve
as tissue-specific transcriptional factors. It should be
pointed out that, although these factors are not expr and Mif5 (Benezra et al., 1990). These molecules serve
as tissue-specific transcriptional factors. It should be
pointed out that, although these factors are not expressed
in the heart, it is likely that similar factors, n as tissue-specific transcriptional factors. It should be
pointed out that, although these factors are not expressed
in the heart, it is likely that similar factors, not yet
identified, are responsible for the cardiac phen pointed out that, although these factors are not expressed
in the heart, it is likely that similar factors, not yet
identified, are responsible for the cardiac phenotype (for
review, see Olson, 1993). The expression level in the heart, it is likely that similar factors, not yeldentified, are responsible for the cardiac phenotype (foreview, see Olson, 1993). The expression level is usuall high in undifferentiated proliferating cells but dim identified, are responsible for the cardiac phenotype (for
review, see Olson, 1993). The expression level is usually
high in undifferentiated proliferating cells but diminishes
with growth arrest and when cells begin to d review, see Olson, 1993). The expression level is usually
high in undifferentiated proliferating cells but diminishes
with growth arrest and when cells begin to differentiate.
Concomitantly with the induction of Id, α high in undifferentiated proliferating cells but diminishes with growth arrest and when cells begin to differentiate. Concomitantly with the induction of Id, α -agonists increased by 51% the rate of protein synthesis (S with growth arrest and when cells begin to differentiate.
Concomitantly with the induction of Id, α -agonists in-
creased by 51% the rate of protein synthesis (Springhorn
et al., 1992). This study raises the possibility Concomitantly with the induction of Id, α -agonists in
creased by 51% the rate of protein synthesis (Springhor
et al., 1992). This study raises the possibility that, in
response to physiological stimuli, including catec creased by 51% the rate of protein synthesis (Springhorn et al., 1992). This study raises the possibility that, in response to physiological stimuli, including catecholamines' action through α -adrenoceptors, Id could m et al., 1992). This study raises the possibility that, in response to physiological stimuli, including catecholamines' action through α -adrenoceptors, Id could modulate cell growth and regulate the cardiac phenotype's amines' action through α -adrenoceptors, Id could modulate cell growth and regulate the cardiac phenotype's a m
plasticity both during cardiac ontogeny and in the adult. bett
Myocardial hypertrophy is an adaptive respon

ulate cell growth and regulate the cardiac phenotype's
plasticity both during cardiac ontogeny and in the adult.
Myocardial hypertrophy is an adaptive response of the
heart to hemodynamic overload and commonly occurs in
ga plasticity both during cardiac ontogeny and in the adult.
Myocardial hypertrophy is an adaptive response of the
heart to hemodynamic overload and commonly occurs in
patients with hypertension and valvular heart disease
(Sw Myocardial hypertrophy is an adaptive response of theart to hemodynamic overload and commonly occurs
patients with hypertension and valvular heart dises
(Swynghedauw and Delcayre, 1982). Zierhut and Zimn
(1989) reported th heart to hemodynamic overload and commonly occurs in
patients with hypertension and valvular heart disease
(Swynghedauw and Delcayre, 1982). Zierhut and Zimmer
(1989) reported that the intravenous infusion of norepi-
nephr patients with hypertension and valvular heart disease (Swynghedauw and Delcayre, 1982). Zierhut and Zimmer (1989) reported that the intravenous infusion of norepi-
nephrine for 3 days triggered the development of left
vent (Swynghedauw and Delcayre, 1982). Zierhut and Zimmer (1989) reported that the intravenous infusion of norepi-
nephrine for 3 days triggered the development of left
ventricular hypertrophy as indicated by changes in sev-
e (1989) reported that the intravenous infusion of norepi-
nephrine for 3 days triggered the development of left
ventricular hypertrophy as indicated by changes in sev-
eral functional parameters (e.g., increase in heart ra nephrine for 3 days triggered the development of left ventricular hypertrophy as indicated by changes in several functional parameters (e.g., increase in heart rate and left ventricular rate of change of pressure and incre ventricular hypertrophy as indicated by changes in several functional parameters (e.g., increase in heart rate the and left ventricular rate of change of pressure and increased total peripheral resistance), as well as inc eral functional parameters (e.g., increase in heart rate the and left ventricular rate of change of pressure and increased total peripheral resistance), as well as increases (Se in the RNA to DNA and left ventricle weight and left ventricular rate of change of pressure and in-
creased total peripheral resistance), as well as increases
in the RNA to DNA and left ventricle weight to body
weight ratios. The authors attributed this effect to b

(1989)

(1989)

diac overload, the density of cardiac α_1 -adrenoceptors

was enhanced and preceded the development of cardiac

hypertrophy in pressure-overloaded hearts (Tamai et al., diac overload, the density of cardiac α_1 -adrenoceptors
was enhanced and preceded the development of cardiac
hypertrophy in pressure-overloaded hearts (Tamai et al.,
1989). An enhanced α_1 -adrenoceptor activity and diac overload, the density of cardiac α_1 -adrenoceptors
was enhanced and preceded the development of cardiac
hypertrophy in pressure-overloaded hearts (Tamai et al.,
1989). An enhanced α_1 -adrenoceptor activity and diac overload, the density of cardiac α_1 -adrenoceptors
was enhanced and preceded the development of cardiac
hypertrophy in pressure-overloaded hearts (Tamai et al.,
1989). An enhanced α_1 -adrenoceptor activity and was enhanced and preceded the development of cardiac
hypertrophy in pressure-overloaded hearts (Tamai et al.,
1989). An enhanced α_1 -adrenoceptor activity and an
excessive α_1 -adrenoceptor-mediated growth may sub-
s 1989). An enhanced α_1 -adrenoceptor activity and an excessive α_1 -adrenoceptor-mediated growth may subserve protein synthesis in response to pressure overload. More recently, Kagiya et al. (1991a) showed that, in ca excessive α_1 -adrenoceptor-mediated growth may su
serve protein synthesis in response to pressure overloa
More recently, Kagiya et al. (1991a) showed that,
cardiomyopathic hamsters, α_1 -adrenoceptor density r
mained cardiomyopathic hamsters, α_1 -adrenoceptor density re-More recently, Kagiya et al. (1991a) showed that, cardiomyopathic hamsters, α_1 -adrenoceptor density mained higher than in control animals during the devopment of the hypertrophic stage; the authors also served an atte cardiomyopathic hamsters, α_1 -adrenoceptor density re-
mained higher than in control animals during the devel-
opment of the hypertrophic stage; the authors also ob-
served an attenuation of the hypertrophy when α_1 mained higher than in control animals during the devel-
opment of the hypertrophic stage; the authors also ob-
served an attenuation of the hypertrophy when α_1 -adre-
noceptors were blocked. They, thus, concluded that opment of the hypertrophic stage; the authors also
served an attenuation of the hypertrophy when α_1 -a
noceptors were blocked. They, thus, concluded that
adrenergic stimulation played an important role in
progression o adrenergic stimulation played an important role in the
progression of cardiac hypertrophy in cardiomyopathy.
VI. Existence of Functional α_1 -Adrenoceptors in
Human Cardiac Tissue

progression of cardiac hypertrophy in cardiomyopathy.
 VI. Existence of Functional α_1 **-Adrenoceptors in

Human Cardiac Tissue**
 A. In Vitro Studies Progression of cartiac
VI. Existence of Filtmen
A. In Vitro Studies
Human cardiac cel

et al., 1992). This study raises the possibility that, in

educator has been cloned (Ramarao et al., 1992).

response to physiological stimuli, including catechol-

The nucleotide sequence predicts a seven-transmem-

amin 1989). An enhanced α_1 -adrenoceptor activity and an excessive α_1 -adrenoceptor-mediated growth may sub-
serve protein synthesis in response to pressure overload.
More recently, Kagiya et al. (1991a) showed that, in VI. Existence of Functional α_1 -Adrenoceptors in
Human Cardiac Tissue
In Vitro Studies
Human cardiac cells possess α_1 -adrenoceptors. This
is been demonstrated by binding studies using selective Human Cardiac Tissue

A. In Vitro Studies

Human cardiac cells possess α_1 -adrenoceptors. This

has been demonstrated by binding studies using selective
 α_1 -adrenoceptors ligands, [³H]prazosin or [¹²⁵I]IBE 2254 A. In Vitro Studies

Human cardiac cells possess α_1 -adrenoceptors. This

has been demonstrated by binding studies using selective
 α_1 -adrenoceptors ligands, [³H]prazosin or [¹²⁵I]IBE 2254

(Bevilacqua et al., Human cardiac cells possess α_1 -adrenoceptors. This
has been demonstrated by binding studies using selective
 α_1 -adrenoceptors ligands, [³H]prazosin or [¹²⁵I]IBE 2254
(Bevilacqua et al., 1987; Böhm et al., 1988b Human cardiac cells possess α_1 -adrenoceptors. This
has been demonstrated by binding studies using selective
 α_1 -adrenoceptors ligands, [³H]prazosin or [¹²⁵I]IBE 2254
(Bevilacqua et al., 1987; Böhm et al., 1988b has been demonstrated by binding studies using selective α_1 -adrenoceptors ligands, [³H]prazosin or [¹²⁵I]IBE 2254 (Bevilacqua et al., 1987; Böhm et al., 1988b; Bristow et al., 1988; Steinfath et al., 1992a,b). In α_1 -adrenoceptors ligands, [³H]prazosin or [¹²⁵I]IBE 2254 (Bevilacqua et al., 1987; Böhm et al., 1988b; Bristow et al., 1988; Steinfath et al., 1992a,b). In the presence of GTP, a rightward shift of the displacemen (Bevilacqua et al., 1987; Böhm et al., 1988b; Bristow et al., 1988; Steinfath et al., 1992a,b). In the presence of GTP, a rightward shift of the displacement curve for unlabeled α_1 -agonists occurred, suggesting that h al., 1988; Steinfath et al., 1992a,b). In the presence of GTP, a rightward shift of the displacement curve for unlabeled α_1 -agonists occurred, suggesting that human cardiac α_1 -adrenoceptors are linked to a GTP-bin GTP, a rightward shift of the displacement curve for
unlabeled α_1 -agonists occurred, suggesting that human
cardiac α_1 -adrenoceptors are linked to a GTP-binding
protein (Bevilacqua et al., 1987). It is not yet know unlabeled α_1 -agonists occurred, suggesting that human cardiac α_1 -adrenoceptors are linked to a GTP-binding protein (Bevilacqua et al., 1987). It is not yet known which α_1 -adrenoceptor subtypes are present in h cardiac α_1 -adrenoceptors are linked to a GTP-binding
protein (Bevilacqua et al., 1987). It is not yet known
which α_1 -adrenoceptor subtypes are present in human
myocardial cells. The gene encoding the human α_{1B} protein (Bevilacqua et al., 1987). It is not yet
which α_1 -adrenoceptor subtypes are present in α_1 -adrenoceptor subtypes are present in α_2
myocardial cells. The gene encoding the huma
adrenoceptor has been clon which α_1 -adrenoceptor subtypes are present in human
myocardial cells. The gene encoding the human α_{1B} -
adrenoceptor has been cloned (Ramarao et al., 1992).
The nucleotide sequence predicts a seven-transmem-
brane myocardial cells. The gene encoding the human α_{1B} -
adrenoceptor has been cloned (Ramarao et al., 1992).
The nucleotide sequence predicts a seven-transmem-
brane domain receptor made of 517 amino acids and with
a mole adrenoceptor has been cloned (Ramarao et al., 1992
The nucleotide sequence predicts a seven-transmen
brane domain receptor made of 517 amino acids and wit
a molecular mass of 57 kDa. A high homology exis
between this huma The nucleotide sequence predicts a seven-transmen
brane domain receptor made of 517 amino acids and wit
a molecular mass of 57 kDa. A high homology exis
between this human receptor and the α_{1B} -adrenocepto
found in ra brane domain receptor made of 517 amino acids and with
a molecular mass of 57 kDa. A high homology exists
between this human receptor and the α_{1B} -adrenoceptor
found in rat, hamster, and dog. The α_{1B} -adrenoceptor a molecular mass of 57 kDa. A high homology exists between this human receptor and the α_{1B} -adrenoceptor found in rat, hamster, and dog. The α_{1B} -adrenoceptor gene is transcribed in human hearts as demonstrated by between this human receptor and the α_{1B} -adrenoceptor
found in rat, hamster, and dog. The α_{1B} -adrenoceptor
gene is transcribed in human hearts as demonstrated by
Northern blot analysis with the aid of a fragment found in rat, hamster, and dog. The α_{1B} -adrenoceptor
gene is transcribed in human hearts as demonstrated by
Northern blot analysis with the aid of a fragment from
a heart CDNA library that corresponds to exon 1 of th

The stimulation of human atrial or ventricular α_1 -Northern blot analysis with the aid of a fragment from
a heart cDNA library that corresponds to exon 1 of the
gene (Ramarao et al., 1992).
The stimulation of human atrial or ventricular α_1 -
adrenoceptors by endogenous a heart cDNA library that corresponds to exon 1 of gene (Ramarao et al., 1992).
The stimulation of human atrial or ventricular adrenoceptors by endogenous catecholamines or s
thetic sympathomimetics, in the presence of $\$ gene (Ramarao et al., 1992).
The stimulation of human atrial or ventricular α_1 -
adrenoceptors by endogenous catecholamines or syn-
thetic sympathomimetics, in the presence of β -adreno-
ceptor blockade, produces a p The stimulation of human atrial or ventricular α_1 -
adrenoceptors by endogenous catecholamines or syn-
thetic sympathomimetics, in the presence of β -adreno-
ceptor blockade, produces a positive inotropic effect
(Sch adrenoceptors by endogenous catecholamines or synthetic sympathomimetics, in the presence of β -adrenoceptor blockade, produces a positive inotropic effect (Schümann et al., 1978; Wagner et al., 1980; Brückner et al., 1 thetic sympathomimetics, in the presence of β -adreno-ceptor blockade, produces a positive inotropic effect (Schümann et al., 1978; Wagner et al., 1980; Brückner et al., 1984; Skomedal et al., 1985; Aass et al., 1986; A ceptor blockade, produces a positive inotropic effect
(Schümann et al., 1978; Wagner et al., 1980; Brückner
et al., 1984; Skomedal et al., 1985; Aass et al., 1986; Ask
et al., 1987; Böhm et al., 1988b; Kohl et al., 1989; J

CARDIAC α_1 -A
contractile force produced by α_1 -adrenergic agonists var-
ies among studies. Indeed, the responsiveness of the CARDIAC α_1 -ADREN
contractile force produced by α_1 -adrenergic agonists var-
ies among studies. Indeed, the responsiveness of the an
human cardiac tissue to α_1 -adrenoceptor stimulation can wi CARDIAC α_1 -ADREN
contractile force produced by α_1 -adrenergic agonists var-
ies among studies. Indeed, the responsiveness of the ant
human cardiac tissue to α_1 -adrenoceptor stimulation can wit
be affected by se contractile force produced by α_1 -adrenergic agonists varies among studies. Indeed, the responsiveness of the human cardiac tissue to α_1 -adrenoceptor stimulation can be affected by several factors. These include th contractile force produced by α_1 -adrenergic agonists var
ies among studies. Indeed, the responsiveness of the
human cardiac tissue to α_1 -adrenoceptor stimulation can
be affected by several factors. These include t ies among studies. Indeed, the responsiveness of the and human cardiac tissue to α_1 -adrenoceptor stimulation can wive affected by several factors. These include the prior fuscondition of the heart (e.g., failing versu human cardiac tissue to α_1 -adrenoceptor stimulation can
be affected by several factors. These include the prior
condition of the heart (e.g., failing versus nonfailing),
exposure of cardiac muscle to different drugs, be affected by several factors. These include the prior fucondition of the heart (e.g., failing versus nonfailing), resposure of cardiac muscle to different drugs, and the to procedure of tissue removal during surgery and condition of the heart (e.g., failing versus nonfailing), ragposure of cardiac muscle to different drugs, and the to procedure of tissue removal during surgery and further un manipulations of the specimens. In nonfailing exposure of cardiac muscle to different drugs, and the procedure of tissue removal during surgery and further manipulations of the specimens. In nonfailing human hearts α_1 -adrenoceptor stimulation can increase the for procedure of tissue removal during surgery and further
manipulations of the specimens. In nonfailing human
hearts α_1 -adrenoceptor stimulation can increase the force
of contraction more than 2-fold (Kohl et al., 1989; hearts α_1 -adrenoceptor stimulation can increase the force
of contraction more than 2-fold (Kohl et al., 1989; Terzic,
1990). In failing human hearts, the α_1 -mediated positive
inotropic effect is usually smaller (S hearts α_1 -adrenoceptor stimulation can increase the force
of contraction more than 2-fold (Kohl et al., 1989; Terzic,
1990). In failing human hearts, the α_1 -mediated positive
inotropic effect is usually smaller (S of contraction more than 2-fold (Kohl et al., 1989; Terzic, thou
1990). In failing human hearts, the α_1 -mediated positive tilit
inotropic effect is usually smaller (Schmitz et al., 1987a; anta
Böhm et al., 1988b; Jako 1990). In failing human hearts, the α_1 -mediated positive tili inotropic effect is usually smaller (Schmitz et al., 1987a; ant Böhm et al., 1988b; Jakob et al., 1988; Steinfath et al., per 1992b). The mechanism respons Böhm et al., 1988b; Jakob et al., 1988; Steinfath et al., 1992b). The mechanism responsible for the decrease in inotropic responsiveness to α_1 -adrenergic agonists with the progression of heart failure is not known.
Th bhm et al., 1988b; Jakob et al., 1988; Steinfath et al., 92b). The mechanism responsible for the decrease in otropic responsiveness to α_1 -adrenergic agonists with e progression of heart failure is not known.
The absol

inotropic responsiveness to α_1 -adrenergic agonists with
the progression of heart failure is not known.
The absolute number of α_1 -adrenoceptors does not
change or even increase during the development of car-
diac f inotropic responsiveness to α_1 -adrenergic agonists with
the progression of heart failure is not known.
The absolute number of α_1 -adrenoceptors does not
change or even increase during the development of car-
diac f the progression of heart failure is not known.
The absolute number of α_1 -adrenoceptors does not
change or even increase during the development of car-
diac failure (Bristow et al., 1988; Steinfath et al., 1992b)
In ca The absolute number of α_1 -adrenoceptors does not when the approximate of cartian chainer (Bristow et al., 1988; Steinfath et al., 1992b).
In cardiac membranes obtained from patients with end-
stage heart failure (New change or even increase during the development of car-
diac failure (Bristow et al., 1988; Steinfath et al., 1992b).
In cardiac membranes obtained from patients with end-
stage heart failure (New York Heart Association IV In cardiac membranes obtained from patients with end-
stage heart failure (New York Heart Association IV, due
to an idiopathic dilated cardiomyopathy), the density of In cardiac membranes obtained from patients with end-
stage heart failure (New York Heart Association IV, due
to an idiopathic dilated cardiomyopathy), the density of
ventricular α_1 -adrenoceptors, assessed using [³H stage heart failure (New York Heart Association IV, due
to an idiopathic dilated cardiomyopathy), the density of
ventricular α_1 -adrenoceptors, assessed using [³H]prazo-
sin, was found to be 11 fmol/mg protein (nonfa ventricular α_1 -adrenoceptors, assessed using [³H]prazo-
sin, was found to be 11 fmol/mg protein (nonfailing
hearts, 4 fmol/mg protein) (Steinfath et al., 1992a,b).
Because there is no reduction of cardiac α -adren ventricular α_1 -adrenoceptors, assessed using [³H]pra
sin, was found to be 11 fmol/mg protein (nonfail
hearts, 4 fmol/mg protein) (Steinfath et al., 1992a,
Because there is no reduction of cardiac α -adrenocept
but sin, was found to be 11 fmol/mg protein (nonfailing n
hearts, 4 fmol/mg protein) (Steinfath et al., 1992a,b). p
Because there is no reduction of cardiac α -adrenoceptors a
but an increased ratio of α to β adrenoce hearts, 4 fmol/mg protein) (Steinfath et al., 1993 Because there is no reduction of cardiac α -adrenoceptors, α noceptors might contribute to the maintenance of contractility in heart failure, in which β -adrenoce Because there is no reduction of cardiac α -adrenoceptors adrespot to the maintenance of cardiac are f
noceptors might contribute to the maintenance of cardiac are f
contractility in heart failure, in which β -adrenoc but an increased ratio of α to β and increased rootribute to the contractility in heart failure, in we mediated responses are severely α et al., 1982; Böhm et al., 1988b). The mechanism of the positive ceptors might contribute to the maintenance of cardiac
ntractility in heart failure, in which β -adrenoceptors-
ediated responses are severely compromised (Bristow
al., 1982; Böhm et al., 1988b).
The mechanism of the po

contractility in heart failure, in which β -adrenoceptors-
mediated responses are severely compromised (Bristow
et al., 1982; Böhm et al., 1988b).
The mechanism of the positive inotropic effect of α_1 -
adrenergic ago mediated responses are severely compromised (Bristow
et al., 1982; Böhm et al., 1988b).
The mechanism of the positive inotropic effect of α_1 -
adrenergic agonists in human tissue is a matter of current
investigation. I et al., 1982; Böhm et al., 1988b).
The mechanism of the positive inotropic effect of α_1 -
adrenergic agonists in human tissue is a matter of current
investigation. In atrial tissue, the positive inotropic effect
is not The mechanism of the positive inotropic effect of α_1 -
adrenergic agonists in human tissue is a matter of current
investigation. In atrial tissue, the positive inotropic effect
is not accompanied by an increase in the adrenergic agonists in human tissue is a matter of current
investigation. In atrial tissue, the positive inotropic effect
is not accompanied by an increase in the action potential
duration but rather by a decrease (Jahnel is not accompanied by an increase in the action potential
duration but rather by a decrease (Jahnel et al., 1992a). In this overview, we have attempted to summarize the
On the other hand, in a preliminary study performed duration but rather by a decrease (Jahnel et al., 1992a).
On the other hand, in a preliminary study performed
using the whole cell patch clamp technique in single
atrial cells isolated from nonfailing hearts, methoxamine,
 duration but rather by a decrease (Jahnel et al., 1992a).
On the other hand, in a preliminary study performed
using the whole cell patch clamp technique in single
atrial cells isolated from nonfailing hearts, methoxamine,
 On the other hand, in a preliminary study performed
using the whole cell patch clamp technique in single
atrial cells isolated from nonfailing hearts, methoxamine,
in the presence of propranolol, reduced the transient
out using the whole cell patch clamp technique in single atrial cells isolated from nonfailing hearts, methoxamine, in the presence of propranolol, reduced the transient outward current independent of Ca^{2+} , an effect that atrial cells isolated from nonfailing hearts, methoxation the presence of propranolol, reduced the transout outward current independent of Ca^{2+} , an effect might favor a prolongation of the action potential Legrand and the presence of propranolol, reduced the transient
tward current independent of Ca^{2+} , an effect that
ight favor a prolongation of the action potential (B.
grand and E. Coraboeuf, personal communication).
In human ventr

might favor a prolongation of the action potential (B. Legrand and E. Coraboeuf, personal communication).
In human ventricular trabeculae, phenylephrine produces an enhanced breakdown of PIP_2 and phosphati-dylinosito duces an enhanced breakdown of PIP_2 and phosphati-Legrand and E. Coraboeuf, personal communio
In human ventricular trabeculae, phenylepl
duces an enhanced breakdown of PIP_2 and p
dylinositol phosphate. Accordingly, IP₃ and its
IP₂ and IP₁ are increased (Kohl e **B. In Vivo Studies**
B. In Vivo Studies
B. In Vivo Studies
Attempts to demon

linositol phosphate. Accordingly, IP₃ and its cong

²/₂ and IP₁ are increased (Kohl et al., 1989).
 In Vivo Studies

Attempts to demonstrate the effects of α_1 -adrenor

r agonists and antagonists on myocardia IP₂ and IP₁ are increased (Kohl et al., 1989).

B. In Vivo Studies

Attempts to demonstrate the effects of α_1 -adrenoceptor agonists and antagonists on myocardial contractility

in vivo in humans are hampered by th B. In Vivo Studies
Attempts to demonstrate the effects of α_1 -adrenoceptor agonists and antagonists on myocardial contractility
in vivo in humans are hampered by the confounding
effects of stimulation and inhibition of B. In vivolus studies
Attempts to demonstrate the effects of α_1 -adrenoctor
tor agonists and antagonists on myocardial contractii
in vivo in humans are hampered by the confound
effects of stimulation and inhibition of Attempts to demonstrate the effects of α_1 -adrenoceptor agonists and antagonists on myocardial contractility tice in vivo in humans are hampered by the confounding creflects of stimulation and inhibition of vascular $\$ tor agonists and antagonists on myocardial contractility
in vivo in humans are hampered by the confounding
effects of stimulation and inhibition of vascular α_1 -adre-
moceptors on ventricular loading conditions and ref in vivo in humans are hampered by the confounding
effects of stimulation and inhibition of vascular α_1 -adre-
noceptors on ventricular loading conditions and reflex
mechanisms (Curiel et al., 1989). To avoid the system

ENOCEPTORS
ndzberg et al. (1991) infused α_1 -adrenoceptor agonists or
antagonists into the left main coronary artery of subjects ENOCEPTORS 167

ndzberg et al. (1991) infused α_1 -adrenoceptor agonists or

antagonists into the left main coronary artery of subjects

with normal left ventricular function. Intracoronary in-ENOCEPTORS 167

ndzberg et al. (1991) infused α_1 -adrenoceptor agonists or

antagonists into the left main coronary artery of subjects

with normal left ventricular function. Intracoronary in-

fusion of phenylephrine mdzberg et al. (1991) infused α_1 -adrenoceptor agonists or antagonists into the left main coronary artery of subjects with normal left ventricular function. Intracoronary infusion of phenylephrine caused an increase in ndzberg et al. (1991) infused α_1 -adrenoceptor agonists or antagonists into the left main coronary artery of subjects with normal left ventricular function. Intracoronary infusion of phenylephrine caused an increase in antagonists into the left main coronary artery of subjects
with normal left ventricular function. Intracoronary in-
fusion of phenylephrine caused an increase in the peak
rate of left ventricular pressure increase, which i fusion of phenylephrine caused an increase in the peak
rate of left ventricular pressure increase, which is known
to provide a reliable index of changes in inotropic state
under these conditions (Colucci, 1990). The concur rate of left ventricular pressure increase, which is known rate of left ventricular pressure increase, which is known
to provide a reliable index of changes in inotropic state
under these conditions (Colucci, 1990). The concurrent
infusion of phentolamine significantly reduced th to provide a reliable index of changes in inotropic st
under these conditions (Colucci, 1990). The concurr
infusion of phentolamine significantly reduced the
sponse to phenylephrine (Landzberg et al., 1991).
though α_1 under these conditions (Colucci, 1990). The concurrentifiusion of phentolamine significantly reduced the response to phenylephrine (Landzberg et al., 1991). Although α_1 -adrenoceptor stimulation increased contractility infusion of phentolamine significantly reduced the re-
sponse to phenylephrine (Landzberg et al., 1991). Al-
though α_1 -adrenoceptor stimulation increased contrac-
tility, the intracoronary infusion of the α_1 -adren though α_1 -adrenoceptor stimulation increased contractility, the intracoronary infusion of the α_1 -adrenoceptor antagonist, phentolamine, did not affect the baseline peak rate of left ventricular pressure increase. though α_1 -adrenoceptor stimulation increased contility, the intracoronary infusion of the α_1 -adrenoce antagonist, phentolamine, did not affect the base peak rate of left ventricular pressure increase. The thors co tility, the intracoronary infusion of the α_1 -adrenoceptor
antagonist, phentolamine, did not affect the baseline
peak rate of left ventricular pressure increase. The au-
thors concluded that endogenous myocardial α_1 antagonist, phentolamine, did not affect the baseline
peak rate of left ventricular pressure increase. The au-
thors concluded that endogenous myocardial α_1 -adrener-
gic tone may not play a role in maintaining the bas peak rate of left ventricular pressure increase. The authors concluded that endogenous myocardial α_1 -adrenergic tone may not play a role in maintaining the basal state of left ventricular contractility in humans, at l thors conclu
gic tone ma
state of left
when subje
al., 1991).
Consister state of left ventricular contractility in humans, at least
when subjects rest in the supine position (Landzberg et
al., 1991).
Consistent with the in vitro studies, the α_1 -adrenocep-

state of left ventricular contractility in humans, at least
when subjects rest in the supine position (Landzberg et
al., 1991).
Consistent with the in vitro studies, the α_1 -adrenocep-
tor-mediated positive inotropic e when subjects rest in the supine position (Landzberg et al., 1991).
Consistent with the in vitro studies, the α_1 -adrenoceptor-mediated positive inotropic effect is reduced in congestive heart failure (Landzberg et al. al., 1991).
Consistent with the in vitro studies, the α_1 -adrenector-mediated positive inotropic effect is reduced
congestive heart failure (Landzberg et al., 1991). A reduction of α_1 -adrenergic responsiveness with Consistent with the in vitro studies, the α_1 -adrenoceptor-mediated positive inotropic effect is reduced in congestive heart failure (Landzberg et al., 1991). A reduction of α_1 -adrenergic responsiveness without a r tor-mediated positive inotropic effect is reduced in
congestive heart failure (Landzberg et al., 1991). A re-
duction of α_1 -adrenergic responsiveness without a reduc-
tion in α_1 -adrenoceptor density (Bristow et al congestive heart failure (Landzberg et al., 1991). A reduction of α_1 -adrenergic responsiveness without a reduction in α_1 -adrenoceptor density (Bristow et al., 1988) might either reflect reduced efficiency of recep adrenoceptors. might either reflect reduced efficiency of receptor coupling or be due to a cause not specifically related to α_1 -
adrenoceptors.
The demonstration that myocardial α_1 -adrenoceptor
are functional and capable of incr

might either reflect reduced efficiency of receptor coupling or be due to a cause not specifically related to α_1 -adrenoceptors.
The demonstration that myocardial α_1 -adrenoceptors are functional and capable of incr pling or be due to a cause not specifically related to α_1 -
adrenoceptors.
The demonstration that myocardial α_1 -adrenoceptor
are functional and capable of increasing myocardial con-
tractility in humans may also ha adrenoceptors.
The demonstration that myocardial α_1 -adrenoceptor are functional and capable of increasing myocardial contractility in humans may also have implications for other actions related to the myocardial α_1 The demonstration that myocardial α_1 -adrenoceptor
are functional and capable of increasing myocardial con-
tractility in humans may also have implications for other
actions related to the myocardial α_1 -adrenocepto are functional and capable of increasing myocardial con-
tractility in humans may also have implications for other
actions related to the myocardial α_1 -adrenoceptor,
namely, the modulation of gene expression, myocardi tractility in humans may a
actions related to the
namely, the modulation of
hypertrophy, recovery fro
ischemia, and arrhythmia **VII. Concluding Remarks**
VII. Concluding Remarks
view. we have attempted to sure hypertrophy, recovery from intracellular acidosis during
ischemia, and arrhythmias.
VII. Concluding Remarks
In this overview, we have attempted to summarize the

ischemia, and arrhythmias.

VII. Concluding Remarks

In this overview, we have attempted to summarize the

remarkable progress that has been made in recent years

toward understanding the function of cardiac α_1 -adre-**VII. Concluding Remarks**
In this overview, we have attempted to summarize the remarkable progress that has been made in recent ye
toward understanding the function of cardiac α_1 -adre-
noceptors. However, many unresol In this overview, we have attempted to summarize the
remarkable progress that has been made in recent years
toward understanding the function of cardiac α_1 -adre-
noceptors. However, many unresolved issues regarding
th In this overview, we have attempted to summarize the
remarkable progress that has been made in recent years
toward understanding the function of cardiac α_1 -adre-
noceptors. However, many unresolved issues regarding
th remarkable progress that has been made in recent ye
toward understanding the function of cardiac α_1 -ad
noceptors. However, many unresolved issues regard
the α_1 -adrenoceptor-mediated regulation of myocare
function toward understanding the function of cardiac α_1 -adre-noceptors. However, many unresolved issues regarding the α_1 -adrenoceptor-mediated regulation of myocardial function remain to be addressed. Although the stimula noceptors. However, many unresolved issues regard
the α_1 -adrenoceptor-mediated regulation of myocare
function remain to be addressed. Although the stime
tion of cardiac α_1 -adrenoceptors produces a variety
cellular the α_1 -adrenoceptor-mediated regulation of myocard
function remain to be addressed. Although the stimul
tion of cardiac α_1 -adrenoceptors produces a variety
cellular effects, especially during concomitant β -adre tion of cardiac α_1 -adrenoceptors produces a variety of
cellular effects, especially during concomitant β -adreno-
ceptor blockade, it is still unknown under which condi-
tions α_1 -adrenoceptors play a major role tion of cardiac α_1 -adreno
cellular effects, especially
ceptor blockade, it is still
tions α_1 -adrenoceptors pla
modulation of the heart.
The most studied acute Illular effects, especially during concomitant β -adreno-
ptor blockade, it is still unknown under which condi-
ons α_1 -adrenoceptors play a major role in the adrenergic
odulation of the heart.
The most studied acute ceptor blockade, it is still unknown under which conditions α_1 -adrenoceptors play a major role in the adrenergic modulation of the heart.
The most studied acute α_1 -adrenergic effect in cardiac preparations is the

tions α_1 -adrenoceptors play a major role in the adrenergic
modulation of the heart.
The most studied acute α_1 -adrenergic effect in cardiac
preparations is the increase in twitch contractile force.
Further investig modulation of the heart.
The most studied acute α_1 -adrenergic effect in cardiac
preparations is the increase in twitch contractile force.
Further investigation is required to quantify the extent
to which different pro The most studied acute α_1 -adrenergic effect in cardiac
preparations is the increase in twitch contractile force.
Further investigation is required to quantify the extent
to which different proposed inotropic mechanism preparations is the increase in twitch contractile force.
Further investigation is required to quantify the extent
to which different proposed inotropic mechanisms par-
ticipate in the overall positive inotropic effect. A Further investigation is required to quantify the extent
to which different proposed inotropic mechanisms par-
ticipate in the overall positive inotropic effect. An in-
crease in the responsiveness of myofibrils to Ca^{2+} to which different proposed inotropic mechanisms par-
ticipate in the overall positive inotropic effect. An in-
crease in the responsiveness of myofibrils to Ca^{2+} , sub-
sequent to phosphorylation of contractile protein ticipate in the overall positive inotropic effect. An in-
crease in the responsiveness of myofibrils to Ca^{2+} , sub-
sequent to phosphorylation of contractile proteins and
cytosolic alkalinization, appears to be importan sequent to phosphorylation of contractile proteins and
cytosolic alkalinization, appears to be important because,
contrary to β -adrenoceptors, α_1 -adrenoceptors mediate a
positive inotropic effect without a marked c

168 TERZ
intracellular Ca^{2+} concentration. In addition, the inhi-
bition of the I_{to} , as well as the modulation of othe 168 TERZIC I
intracellular Ca^{2+} concentration. In addition, the inhi-
bition of the I_{to}, as well as the modulation of other
conductances that lead to an action potential prolonga-168 TE
intracellular Ca²⁺ concentration. In addition, the in
bition of the I_{to} , as well as the modulation of ot
conductances that lead to an action potential prolor
tion, could also contribute to the positive inot intracellular Ca^{2+} concentration. In addition, the inhibition of the I_{to} , as well as the modulation of oth conductances that lead to an action potential prolong tion, could also contribute to the positive inotrop anism. conductances that lead to an action potential prolongation, could also contribute to the positive inotropic mechanism.
The nature of α_1 -adrenoceptor subtypes and the sub-
cellular pathways that transduce their signal

conductances that lead to an action potential prolonga-
tion, could also contribute to the positive inotropic mech-
ger
anism.
The nature of α_1 -adrenoceptor subtypes and the sub-
tarellular pathways that transduce the tion, could also contribute to the positive inotropic mech
anism.
The nature of α_1 -adrenoceptor subtypes and the sub
cellular pathways that transduce their signal need to b
further elucidated. Although several α_1 anism.
The nature of α_1 -adrenoceptor subtypes and the sucellular pathways that transduce their signal need to further elucidated. Although several α_1 -adrenocept subtypes have been identified, their physiological s The nature of α_1 -adrenoceptor subtypes and the sub-
cellular pathways that transduce their signal need to be
further elucidated. Although several α_1 -adrenoceptor
subtypes have been identified, their physiological cellular pathways that transduce their signal need to be
further elucidated. Although several α_1 -adrenoceptor
subtypes have been identified, their physiological signif-
icance and their exact relationship to specific further elucidated. Although several α_1 -adrenoceptor
subtypes have been identified, their physiological signif-
icance and their exact relationship to specific cellular
effects is still to be uncovered. Moreover, alth subtypes have been identified, their physiological significance and their exact relationship to specific cellular effects is still to be uncovered. Moreover, although it is established that the stimulation of α_1 -adren icance and their exact relationship to specific cellular

effects is still to be uncovered. Moreover, although it is

established that the stimulation of α_1 -adrenoceptors ac-

civates the turnover of PI through a G-pr effects is still to be uncovered. Moreover, although established that the stimulation of α_1 -adrenoceptors tivates the turnover of PI through a G-protein, the narof this regulatory protein is unknown. Furthermore, phos established that the stimulation of α_1 -adrenoceptors activates the turnover of PI through a G-protein, the nature of this regulatory protein is unknown. Furthermore, the $\frac{1}{3}$.
phospholipase C isoenzyme(s) involve tivates the turnover of PI through a G-protein, the nature
of this regulatory protein is unknown. Furthermore, the
phospholipase C isoenzyme(s) involved in the transduc-
tion cascade remain(s) to be elucidated. In additio of this regulatory protein is unknown. Furthermore, the phospholipase C isoenzyme(s) involved in the transduction cascade remain(s) to be elucidated. In addition the PI metabolism, α_1 -adrenergic stimulation could stiv phospholipase C isoenzyme(s) involved in the transduction cascade remain(s) to be elucidated. In addition to the PI metabolism, α_1 -adrenergic stimulation could activate, at least under some circumstances, a CAMP-phosp the PI metabolism, α_1 -adrenergic stimulation could ac-

tivate, at least under some circumstances, a cAMP-

phosphodiesterase, a Ca²⁺-calmodulin-dependent kinase,

and phospholipases A₂ and/or phospholipase D. The the PI metabolism, α_1 -adrenergic stimulation could activate, at least under some circumstances, a CAMP-
phosphodiesterase, a Ca²⁺-calmodulin-dependent kinase,
and phospholipases A₂ and/or phospholipase D. These
tw tivate, at least under some circumstances, a cAMP-
phosphodiesterase, a Ca²⁺-calmodulin-dependent kinase,
and phospholipases A₂ and/or phospholipase D. These
isources, which in turn could either activate specific PKC
 and phospholipases A_2 and/or phospholipase D. These
two last enzymes could produce DAG from several
sources, which in turn could either activate specific PKC
isozymes or give rise to additional second messengers
such a two last enzymes could produce DAG from several
sources, which in turn could either activate specific PKC
isozymes or give rise to additional second messengers
such as leukotrienes, prostaglandins, or cyclic guanosine
mon two last enzymes could produce DAG from seve
sources, which in turn could either activate specific Pl
isozymes or give rise to additional second messeng
such as leukotrienes, prostaglandins, or cyclic guanos
monophosphate sources, which in turn could either activate specific PKC
isozymes or give rise to additional second messengers
such as leukotrienes, prostaglandins, or cyclic guanosine
monophosphate. A plethora of putative second messen isozymes or give rise to additional second messen;
such as leukotrienes, prostaglandins, or cyclic guano;
monophosphate. A plethora of putative second mess
gers could be involved in mediating α_1 -effects
thereby permit ch as leukotrienes, prostaglandins, or cyclic guanosine
onophosphate. A plethora of putative second messen
rs could be involved in mediating α_1 -effects and
ereby permit a fine regulation of cardiac function.
Most of t

monophosphate. A plethora of putative second messen-
gers could be involved in mediating α_1 -effects and
thereby permit a fine regulation of cardiac function.
Most of the investigations related to α_1 -adrenoceptors
 gers could be involved in mediating α_1 -effects and
thereby permit a fine regulation of cardiac function.
Most of the investigations related to α_1 -adrenoceptors
have been performed on single cardiomyocytes, isolate thereby permit a fine regulation of cardiac function.

Most of the investigations related to α_1 -adrenoceptors

have been performed on single cardiomyocytes, isolated

atria, ventricles, or perfused hearts. In some pre Most of the investigations related to α_1 -adrenoceptors
have been performed on single cardiomyocytes, isolated
atria, ventricles, or perfused hearts. In some preparations
the lack of consistent reproducibility has been have been performed on single cardiomyocytes, isolate
atria, ventricles, or perfused hearts. In some preparation
the lack of consistent reproducibility has been reporte
with regard to α_1 -adrenergic effects on I_{C_a} atria, ventricles, or perfused hearts. In some preparations
the lack of consistent reproducibility has been reported
with regard to α_1 -adrenergic effects on I_{Ca} (Alvarez et al.,
1987), Na⁺/K⁺ pump activation (E the lack of consistent reproducibility has been reported
with regard to α_1 -adrenergic effects on I_{C_a} (Alvarez et al., BEI
1987), Na⁺/K⁺ pump activation (Ertl et al., 1991), intra-
cellular Ca²⁺ (Failli et al with regard to α_1 -adrenergic effects on I_{CA} (Alvarez et al., BENEZRA, R., DAVIS, R. L., LOCKSHON, D., TURNER, D. L., AND WEINTRAUB,
1987), Na⁺/K⁺ pump activation (Ertl et al., 1991), intra-
cellular Ca²⁺ (Fai 1987), Na⁺/K⁺ pump activation (Ertl et al., 1991), intracellular Ca²⁺ (Failli et al., 1992; Gambassi et al., 1992), ^{BEI}
or contraction (Niedergerke and Page, 1981). The origin BEI
of this variability is unknown, b cellular Ca²⁺ (Failli et al., 1992; Gambassi et al., 1992), ^{BE}
or contraction (Niedergerke and Page, 1981). The origin
of this variability is unknown, but it might be compared
to the weakening of α_1 -adrenergic eff or contraction (Niedergerke and Page, 1981). The origin
of this variability is unknown, but it might be compared
to the weakening of α_1 -adrenergic effects in the failing
heart (Schmitz et al., 1987a), their variations of this variability is unknown, but it might be compared
to the weakening of α_1 -adrenergic effects in the failing
heart (Schmitz et al., 1987a), their variations during
development (Rosen et al., 1989), or the presenc to the weakening of α_1 -adrenergic effects in the failing BER
heart (Schmitz et al., 1987a), their variations during BER
development (Rosen et al., 1989), or the presence of the c
endocardial endothelium (Meulemans et heart (Schmitz et al., 1987a), their variations durindevelopment (Rosen et al., 1989), or the presence of the
endocardial endothelium (Meulemans et al., 1990). I
addition, synthetic α_1 -sympathomimetics have been use
i development (Rosen et al., 1989), or the presence of the
endocardial endothelium (Meulemans et al., 1990). In
addition, synthetic α_1 -sympathomimetics have been used
in these investigations more commonly than the physendocardial endothelium (Meulemans et al., 1990). In
addition, synthetic α_1 -sympathomimetics have been used
in these investigations more commonly than the phys-
iological neurotransmitter norepinephrine. Although
mark addition, synthetic α_1 -sympathomimetics have been used
in these investigations more commonly than the physiological neurotransmitter norepinephrine. Although
markedly contributing to the understanding of α_1 -effect in these investigations more commonly than the phys-
iological neurotransmitter norepinephrine. Although
markedly contributing to the understanding of α_1 -effects
in vitro, these studies have not uncovered the role of iological neurotransmitter norepinephrine. Although
markedly contributing to the understanding of α_1 -effects
in vitro, these studies have not uncovered the role of the
 α_1 -adrenoceptor in vivo, because the cardiac markedly contributing to the understanding of α_1 -effect
in vitro, these studies have not uncovered the role of th
 α_1 -adrencceptor in vivo, because the cardiac preparation
used were devoid of systemic regulatory me in vitro, these studies have not uncovered the role of the
 α_1 -adrenoceptor in vivo, because the cardiac preparations

used were devoid of systemic regulatory mechanisms

(e.g., concomitant β -adrenergic and other n α_1 -adrenoceptor in vivo, because the cardiac preparation
used were devoid of systemic regulatory mechanism
(e.g., concomitant β -adrenergic and other neurohormone
stimulations, cardiovascular reflexes) which interfe used were devoid of systemic regulatory mechanisms (e.g., concomitant β -adrenergic and other neurohormonal
stimulations, cardiovascular reflexes) which interfere
with the response of cardiac muscle to α_1 -adrenocept (e.g., concomitant β -adrenergic and other neurohormonal
stimulations, cardiovascular reflexes) which interfere
with the response of cardiac muscle to α_1 -adrenoceptor
stimulation. In this regard, Guse et al. (1991) stimulations, cardiovascular reflexes) which interfere
with the response of cardiac muscle to α_1 -adrenoceptor
stimulation. In this regard, Guse et al. (1991) recently
reported that a simultaneous β -adrenergic stimu with the response of cardiac muscle to α_1 -adrenoceptor stimulation. In this regard, Guse et al. (1991) recently reported that a simultaneous β -adrenergic stimulation strongly decreases the α_1 -adrenoceptor-induc stimulation. In this regreported that a simult strongly decreases the *c* in inositol phosphates mains to be determined Finally, most of these reported that a simultaneous β -adrenergic stimulation
strongly decreases the α_1 -adrenoceptor-induced increase
in inositol phosphates through a mechanism that re-
mains to be determined.
Finally, most of these studi

ET AL.
the information provided by molecular biology studies.
Indeed, chronic stimulation of cardiac muscle with α_1 -IT AL.
the information provided by molecular biology studies.
Indeed, chronic stimulation of cardiac muscle with α_1 -
adrenoceptor agonists modifies the expression of specific ET AL.
the information provided by molecular biology studies.
Indeed, chronic stimulation of cardiac muscle with α_1 -
adrenoceptor agonists modifies the expression of specific
genes and could alter in a quantitative or The information provided by molecular biology studies.
Indeed, chronic stimulation of cardiac muscle with α_1 -
adrenoceptor agonists modifies the expression of specific
genes and could alter in a quantitative or qualit Indeed, chronic stimulation of cardiac muscle with α_1 -
adrenoceptor agonists modifies the expression of specific
genes and could alter in a quantitative or qualitative
manner several of the same cellular proteins that adrenoceptor agonists modifies the expression of specific
genes and could alter in a quantitative or qualitative
manner several of the same cellular proteins that are
targets of α_1 -adrenergic action also on a short ti

- REFERENCES

AASS, H., SKOMEDAL, T., OSNES, J.-B., FJELD, N. B., KLINGEN, G., LANGSLET,

A., SYENNEVIG, J., AND SEMB, G.: Noradrenaline evokes an a-adrenoceptor-

mediated inotropic effects in human ventricular myocardium. AASS, H., SKOMEDAL, T., OSNES, J.-B., FJELD, N. B., KLINGEN, G., LANGSLET, REFERENCES

AASS, H., SKOMEDAL, T., OSNES, J.-B., FJELD, N. B., KLINGEN, G., LANGSLET,

A., SVENNEVIG, J., AND SEMB, G.: Noradrenaline evokes an α -adrenoceptor-

mediated inotropic effects in human ventricular myocardi
-
- ALVAREZ, J., AND VASSORT, G.: Properties of the low threshold Ca current in single frog atrial myocytes. A comparison with the high threshold Ca current. J. Gen. Physiol. 100: 519-545, 1992.
ALVAREZ, J. L., MONGO, K. G.,
- single frog atrial myocytes. A comparison with the high threshold Ca current.

J. Gen. Physiol. 100: 519-545, 1992.

ALVAREZ, J. L., MONGO, K. G., AND VASSORT, G.: Effects of α_1 -adrenergic stimulation on the Ca curren
- stimulation on the Ca current in single ventricular frog cells. J. Physiol.
(Lond.) 390: 66P, 1987.
ANYUKHOVSKY, E. P., AND ROSEN, M. R.: Abnormal automatic rhythms in
ischemic Purkinje fibers are modulated by a specific
- **RODITATION SET AND ROSEN, M. R.: Abnormal automatic rhythms** ischemic Purkinje fibers are modulated by a specific α_1 -adrenergic recepts ubtype. Circulation 83: 2076–2086, 1991.
ROSEN, M. R. P., RYBIN, V. O., NIKASHIN ischemic Purkinje fibers are modulated by a specific α_1 -adrenergic receptor
subtype. Circulation 83: 2076–2086, 1991.
ANYUKHOVSKY, E. P., RYBIN, V. O., NIKASHIN, A. V., BUDANOVA, O. P., AND
ROSEN, M. R.: Positive inot ROSEN, M. R.: Positive inotropic responses induced by α_1 -adrenergic stimulation of normal and "ischemic" Purkinje fibers have different receptor-effector coupling mechanisms. Circ. Res. 71: 526-534, 1992.
KON, M., AND
-
- ASK, J. A., STENE-LARSEN, G., HELLE, K. B., AND RESCH, F.: Functional α-
adrenoceptors in human atrial preparations in the presence of β-receptor
blockade. Acta Physiol. Scand. 131: 439-445, 1987. voltage dependent K* currents in rat ventricular myocytes. Proc. Natl. Acad.
Sci. USA 85: 8756-8760, 1988.
Ask, J. A., STENE-LARSEN, G., HELLE, K. B., AND RESCH, F.: Functional α -
adrenoceptors in human atrial preparat
- adrenoceptors in human atrial preparations in the presence of β -receptor
blockade. Acta Physiol. Scand. 131: 439-445, 1987.
ASTARIE, C., TERZIC, A., AND VOGEL, S. M.: The endogenous catecholamine,
equinophrine increases
- or particular of phospholipase A₃ *viab* VoGEL, S. M.: The endogenous catecholaminepinephrine increases cytosolic pH in single cardiac cells *via* stimulation of adrenoceptors. J. Mol. Cell. Cardiol. 23: S3, 1991.
EELROD opinephrine increases cytosolic pH in single cardiac cells *via* stimulation of α_1 -
adrenoceptors. J. Mol. Cell. Cardiol. 23: S3, 1991.
AXELROD, J., BURCH, R. M., AND JELSEMA, C. L.: Receptor-mediated activation
of pho adrenoceptors. J. Mol. Cell. Cardiol. 23: 33, 1991.
AXELROD, J., BURCH, R. M., AND JELSEMA, C. L.: Receptor-mediated activation
of phospholipase A₂ via GTP-binding proteins: arachidonic acid and its metab-
olites as seco
-
-
- olites as second messengers. Trends Neurosci. 11: 117-123, 1988.
BARANY, M., AND BARANY, K.: Phosphorylation of myofibrillar proteins. Annu.
Rev. Physiol. 42: 275-292, 1980.
Chen. 266: 4661-4664, 1991.
Lipid activation of protein kinase C. J. Biol.

RELL, R. M., AND BURNS, D. J.: Lipid activation of protein kinase C. J. Biol.

Chem. 266: 4661-4664, 1991.

BENEZRA, R., DAVIS, R. L., LOCKSHON, D., TURNER, D. L., AND WEINTRAUB,

H.: The protei BENEZRA, R., DAVIS, R. L., LOCKSHON, D., TURNER, D. L., AND WEINTRAUB,
H.: The protein Id: a negative regulator of helix-loop-helix DNA binding
proteins. Cell 61: 49-59, 1990.
BENFEY, B. G.: Function of myocardial α -adr
-
- proteins. Cell 61: 49-59, 1990.

BENFEY, B. G.: Function of myocardial α -adrenoceptors. J. Appl. Cardiol. 2: 49-70, 1987.

70, 1987.

BENFEY, B. G., AND VARMA, R. D.: Interactions of sympathomimetic drugs

propranolol
-
- BENFEY, B. G., AND VARMA, R. D.: Interactions of sympathomimetic drugs
propranolol and phentolamine, on atrial refractory period and contractility.
BERRIDGE, M. J., AND IRVINE, R. F.: Inositol phosphate and cell signalling BERRIDGE, M. J., AND IRVINE, R. F.: Inositol phosphate and cell signalling.

Nature (Lond.) 341: 197-205, 1989.

BERRIDGE, M. J., AND IRVINE, R. F.: Inositol phosphate and cell signalling.

Nature (Lond.) 341: 197-205, 19
- phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m₁-muscarinic
receptor, G_{V11}, and phospholipase C- β_1 . J. Biol. Chem. 267: 8081–8088, 1992.
BEVILACQUA, M., VAGO, T., NORBIATO, G., BALDI, G., CHEBAT,
-
-
- the sarcolemma from the myocardium of patients with dilated cardiomyopathy.

J. Cardiovasc. Pharmacol. (Suppl. 4) 10: S94–S96, 1987.

BILLAH, M. M. AND ANTHES, J. C.: The regulation and cellular functions of

phosphatidyl BIRNBAUMER, L., ABRAMOWITZ, J., AND BROWN, A. M.: Receptor-effector coupling by G-proteins. Biochem. Biophys. Acta 1031: 163-224, 1990.
BISHOPRIC, N. H., SIMPSON, P. C., AND ORDAHL, C. P.: Induction of the skeletal α -a **BHOPRIC, N. H., SIMPSON, P. C., AND ORDAHL, C. P.: Induction of the skelet** *α***-actin gene in** *α***₁-adrenoceptor-mediated hypertrophy of rat cardiac myocyt
J. Clin. Invest. 80: 1194–1199, 1987.
ANK, J. H., ROSS, A. H., A**
- phospholipase C. J. Biol. Chem. 266: 18206-18216, 1991. Clin. Invest. 80: 1194-1199, 1987.

BLANK, J. H., ROSS, A. H., AND EXTON, J. H.: Purification and characterizat

of two G-proteins that activate the β_1 isozyme of
-
- BLANK, J. H., ROSS, A. H., AND EXTON, J. H.: Purification and characterization
of two G-proteins that activate the β_1 isozyme of phosphoinositide-specific
phospholipase C. J. Biol. Chem. 266: 18206-18216, 1991.
BOCCKI
- protein phosphorylation. Proc. Natl. Acad. Sci. USA 88: 6210-6213, 1991.
BOGOYEVITCH, M. A., PARKER, P. J., AND SUGDEN, P. H.: Characterization of protein kinase C isotype expression in adult rat heart. Protein kinase C-c

PHARMACOLOGICAL REVIEW

spet

- CARDIAC α_1 -ADRI
BOHM, M., DIET, F., FEILER, G., KEMKES, B., AND ERDMANN, E.: α -Adrenocep-
tors and α -adrenoceptor-mediated positive inotropic effects in failing human
myocardium. J. Cardiovasc. Pharmacol. 12: 35 BOHM, M., DIET, F., FEILER, G., KEMKES, B., AND ERDMANN, E.: α -Adrenoceptors and α -adrenoceptor-mediated positive inotropic effects in failing human myocardium. J. Cardiovasc. Pharmacol. 12: 357–364, 1988b.
BOHM, M. tors and α -adrenoceptor-mediated positive inotropic effects in failing human myocardium. J. Cardiovasc. Pharmacol. 12: 357-364, 1988b.
BOHM, M., MENDE, U., SCHMITZ, W., AND SCHOLZ, H.: Increased responsiveness to stimu myocardium. J. Cardiovasc. Pharmacol. 12: 357-364, 19880.
BOHM, M., MENDE, U., SCHMITZ, W., AND SCHOLZ, H.: Increased responsiveness
to stimulation of α - but not β -adrence proton in hereditary cardiomyopathy of
the S
- to stimulation of α but not β -adrenoceptors in hereditary cardiomyopathy
the Syrian hamster: intact adenosine and cholinoceptor-mediated isoprenali
antagonistic effect. Eur. J. Pharmacol. 128: 135-203, 1366.
HMM, M the Syrian hamster: intact adenosine and cholinoceptor-mediated isoprenaline
antagonistic effect. Eur. J. Pharmacol. 128: 195-203, 1986.
BOHM, M., SCHMITZ, W., AND SCHOLZ, H.: Evidence against a role of a pertussis
toxin-s
- phosphoinositive guanine nucleotide-binding protein in the alpha₁-adrenoceptor mediated positive inotropic effect in the heart. Naunyn Schmiedebergs Arch.
Pharmacol. 335: 476-479, 1987.
PROMI, A., BIAGI, P. L., ROSSI, C. mediated positive inotropic effect in the heart. Naunyn Schmiedebergs Arch.
Pharmacol. 335: 476–479, 1987.
DRDONI, A., BIAGI, P. L., ROSSI, C. A., AND HRELIA S.: Alpha₁-stimulated
phosphoinositide breakdown in cultured c Pharmacol. 335: 476–479, 1987.
REDONI, A., BIAGI, P. L., ROSSI, C. A., AND
phosphoinositide breakdown in cultured cardiduction and composition in docosahexaenoic action
Biophys. Res. Commun. 174: 869–877, 1991.
UNTRA, C., **BORDONI, A., BIAGI, P. L., ROSSI, C. A., AND HRELIA** S.: Alpha₁-stimula phosphoinositide breakdown in cultured cardiomyocytes: diacylglycerol p duction and composition in docosahexaenoic acid supplemented cells. Bioche phosphoinositide breakdown in cultured cardiomyocytes: diacylglycerol production and composition in docosahexaenoic acid supplemented cells. Biochem.
Biophys. Res. Commun. 174: 869–877, 1991.
JUNTRA, C., AND VAUGHAN-JONES,
- duction and composition in doc
Biophys. Res. Commun. 174: 1
UNTRA, C., AND VAUGHAN-JOI
lular pH on contraction in iso-
(Lond.) 418: 163-187, 1989.
UTJDIR, M., AND EL-SHERIFF, Biophys. Res. Commun. 174: 869-877, 1991.
BOUNTRA, C., AND VAUGHAN-JONES, R. D.: Effect of intracellular and extracel-
lular pH on contraction in isolated, mammalian cardiac muscle. J. Physiol.
(Lond.) 418: 163-167, 1989.
 UNTRA, C., AND VAUGHAN-JONES, R. D.: Effect of intracellular and extractular pH on contraction in isolated, mammalian cardiac muscle. J. Physi (Lond.) 418: 163-187, 1989.

(Lond.) 418: 163-187, 1989.

UUTIDIR, M., AND EL-S
- **i** lular pH on contraction in isolated, mammalian cardiac muscle. J. Physiol. (Lond.) 418: 163-187, 1989.
BOUTJDIR, M., AND EL-SHERIFF, N.: α₁-Adrenoceptor regulation of delayed after depolarization and triggered activ
- UUTJOIR, M., AND EL-SHERIFF, N.: α_1 -Adrenoceptor regulation of delayed after depolarization and triggered activity in subendocardial Purkinje fibers surviving one day of myocardial infarction. J. Mol. Cell. Cardiol. 2 depolarization and trig
ing one day of myocard
uTJDIR, M., RESTIVO,
interactions on L-type
421: 337-339, 1992.
AUN, A. P., FEDIDA, **BRAUN, A. P., FEBIDA, WEI, Y., AND EL. SHERIFF, N.: α₁. and β-Adrenergic interactions on L-type calcium current in cardiac myocytes. Pflugers Arch.

BRAUN, A. P., FEDIDA, D., CLARK, R. B., AND GILES, W. R.: Intracellu**
- interactions on L-type calcium current in cardiac myocytes. Pflugers Arch.
421: 337-339, 1992.
BRAUN, A. P., FEDIDA, D., CLARK, R. B., AND GILES, W. R.: Intracellular
mechanisms for α_1 -advenergic regulation of the tran
- 421: 337-339, 1992.

RRAUN, A. P., FEDIDA, D., CLARK, R. B., AND GILES, W. R.: Intracellular

mechanisms for α_1 -adrenergic regulation of the transient outward current in

rabbit atrial myocytes. J. Physiol. (Lond.) 43
-
- myocytes. Pflugers Arch. 421: 431-439, 1992.

BREEN, T. E., AND PRESSLER, M. L.: α_1 -Adrenergic stimulation and phorbol

esters alter intracellular pH in cardiac Purkinje fibers. Clin. Res. 36: 226A,

1988.

BRISTOW, M esters alter intracellular pH in cardiac Purkinje fibers. Clin. Res. 36: 226A,
1988.
BRISTOW, M. R., GINSBURG, R., MINOBE, W. A., CUBICCIOTTI, R. S., SAGEMAN,
W. S., LURIE, K., BILLINGHAM M. E., AND HARRISON, D. C.: Decrea W. S., LURIE, K., BILLINGHAM M. E., AND HARRISON, D. C.: Decreased
catecholamine sensitivity and β -adrenergic receptor density in failing human
hearts. N. Engl. J. Med. 305: 205-211, 1982.
BRISTOW, M. R., KANTROWITZ N.
-
-
- Advenergic function in heart muscle disease and heart failure. J. Mol. Cell.
Cardiol. (Suppl. 2) 17: 41-52, 1985.
BRISTOW, M. R., MINOBE, W., RASMUSSEN, R., HERSHBERGER, R. E., AND
HOFFMAN, B. B.: α_1 -Advenergic recepto correlation between the positive inotropic effect evoked by α -adrenocept stimulation and the levels of cyclic-AMP and/or cyclic-GMP in the isolat ventricle strip of the rabbit of the rabbit. J. Mol. Cell. Cardiol. 10: 2 stimulation and the levels of cyclic-AMP and/or cyclic-GMP in the isolated ventricle strip of the rabbit of the rabbit. J. Mol. Cell. Cardiol. 10: 207–219, 1978.
1978.
NOWN, J. H., BUXTON, I. L., AND BRUNTON, L. L.: α_1
-
- Frischer Characteria Controller and The State Inc., Res. 57: 532-537, 1985.
 **BROWN, J. H., AND JONES, L. G.: Phosphoinositide metabolism in the heart. In

Phosphoinositides and Receptor Mechanisms, ed. by J. W. Putney, p** Now N, J. H., AND JONES, L. G.: Phosphoinositide metabolism in the heart. In CURI

Phosphoinositides and Receptor Mechanisms, ed. by J. W. Putney, pp. 245-

270, Alan R. Liss Inc., New York, 1986.

10. COKNER, R., AND SCH
- Phosphoinositides and Receptor Mechanisms, ed. by J. W. Putney, pp. 245-270, Alan R. Liss Inc., New York, 1986.

200, Alan R. Liss Inc., New York, 1986.

200, Alan R. Liss Inc., New York, 1986.

2010.

2010. Effects of $\$ 270, Alan R. Liss Inc., New York, 1986.

BRÜCKNER, R., AND SCHOLZ, H.: Effects of α -adrenoceptor stimulation with

phenylephrine in the presence of propranolol on force of contraction, slow

inward current and cyclic A
-
- **BUCHTHAL, S. D., BILEZIKIAN, J. P., AND DANILO, P., JR.: Alpha 1-adrenergic** α_1 **-adrenoceptors in the mammalian heart. J. Mol. Cell. Cardiol. 17: 639–645, 1986.
BROCKNER, R., MOGGE, A., AND SCHOLZ, H.: Existence and fun**
- receptors in the adult neonatal and fetal canine heart. Dev. Pharmacol. Therefore, R., MOGGE, A., AND SCHOLZ, H.: Existence and functional role of α_1 -adrenoceptors in the mammalian heart. J. Mol. Cell. Cardiol. 17: 63 20: **90. BUXTON, I. D. BULEZIKIAN, J. P., AND DANILO, P., JR.: Alpha 1-adrenergic**
 BUCHTHAL, S. D., BILEZIKIAN, J. P., AND DANILO, P., JR.: Alpha 1-adrenergic

receptors in the adult neonatal and fetal canine heart. D
- secretiors in the adult neonatal and fetal canine heart. Dev. Pharmacol. Ther.
10: 90–99, 1987.
BUXTON, I. L. O., AND BRUNTON, L. L.: Direct analysis of beta-adrenergic
receptors usivypes on intact adult ventricular myocyt BUXTON, I. L. O., AND BRUNTON, L. L.: Direct analysis of beta-adrenergic
resptor subtypes on intact adult ventricular myocytes of the rat. Circ. Res.
66: 126-132, 1985a.
BUXTON, L.: Action of the cardiac α_1 -adrenergic
-
-
-
- BUXTON, I. L. O., AND BRUNTON, L.: α -Adrenergic receptors on rat ventricular
myocytes: characteristics and likage to cAMP metabolism. Am. J. Physiol.
251: H3⁷⁷-H313, 1986.
CANGA, L., NND STRENN-BORDA, L.: Hypersensit CAPOGROSSI, M. C., KACHADORIAN, W. A., FERRONI, C., SPURGEON, H. A., AND

LAKATTA, E. G.: α_1 - and β -Adrenergic stimulation have opposite effects on

myofibrillar responsiveness to Ca^{2+} in rat cardiac myocytes. C
-

CARDIAC α_1 -ADRENOCEPTORS
 α_2 , E.: α -Adrenocepproperties and Ca²⁺ homeostasis of cardiac myocytes. Circ. Res. **69:** 540–550,

ts in failing human 1991.
 α_1 CAPOGROSSI, M. C., KAKU, T., FILBURN, C. R.,

- **CAPOGROSSI, M. C.,** KAKU, T., **FILBURN, C. R., PELTO, DL., HANSFORD, R. G., SPURGEON, H. A., AND LAKArn, E. G.: Phorbol** ester **and dioctanoylglycerol** properties and Ca³⁺ homeostasis of cardiac myocytes. Circ. Res. 69: 540-550, 1991.

POGROSSI, M. C., KAKU, T., FILBURN, C. R., PELTO, D.L., HANSPORD, R. G., SPURGEON, H. A., AND LAKATTA, E. G.: Phorbol ester and dioctano 1991.

1991.

1991.

1991. A., ANU, T., FILBURN, C. R., PELTO, D.L., HANSPORD, R. G.,

SPURGEON, H. A., ANU LAKATTA, E. G.: Phorbol ester and dioctanoylghycerol

inotropic effect mediated by changes in cytosolic Ca²⁺ in CAPOGROSSI, M. C., KAKU, T., FILBURN, C. R., PELTO, D.L., HANSPORD, R. G.,
SPURGEON, H. A., AND LAKATTA, E. G.: Phorbol ester and dioctanoylglycerol
stimulate membrane association of protein kinase C and have a negative
in
- inotropic effect mediated by changes in cytosolic Ca²⁺ in adult rat cardiac myocytes. Circ. Res. 66: 1143–1155, 1990.

HEASE-WILLIAMS, R. G., SHERIDAN, D. J., AND BRODLEY, K. J.: Arrhythmias

and alpha₁-adrenoceptor bi myocytes. Circ. Res. 66: 1143–1155, 1990.
CHESS-WILLIAMS, R. G., SHERIDAN, D. J., AND BRODLEY, K. J.: Arrhythmiss
and alpha₁-adrenoceptor binding characteristics of the guinea pig perfused
heart during ischemia and repe
- heart during ischemia and reperfusion. J. Mol. Cell. Cardiol. 22: 599-606,
1990.
CHRISTENSEN, G., AKSNES, G., ILEBEKK, A., AND KIL, F.: Release of atrial
natriuretic factor during selective cardiac a-adrenergic and β -a **1990.**
 EHRISTENSEN, G., AKSNES, G., ILEBEKK, A., AND KIL, F.: Release of atrial

natriuretic factor during selective cardiac α-adrenergic and β-adrenergic stim-

ulation, intracoronary Ca²⁺ infusion, and aortic cons
- ulation, intracoronary Ca²⁺ infusion, and aortic constriction in pigs. Circ. Res.
68: 638-644, 1991.
CHRISTIANSEN, H. B., HORGMO, G. T., SKOMEDAL, T., AND OSNES J.-B.:
Enhancement of the α-adrenergic inotropic component Enhancement of the α -adrenergic inotropic component of noradrenaline by
simultaneous stimulation of muscarinic acetylcholine receptors. Eur. J. Phar-
macol. 142: 93-102, 1967.
ARK, M. G., AND PATTEN, G. S.: Adrenergic
- admultaneous stimulation of muscarinic acetylcholine receptors. Eur. J. Pharmacol. 142: 93-102, 1987.
CLARK, M. G., AND PATTEN, G. S.: Adrenergic regulation of glucose metabolism
in rat heart. A calcium-dependent mechanis
- ENRIC IS THE CONSIDENT CHAIN CONSIDERT ARREL AND PATTEN, G. S.: Adrenergic regulation of glucose metabolism
in rat heart. A calcium-dependent mechanism mediated by both α and β -
diversing croeptors. J. Biol. Chem. in rat heart. A calcium-dependent mechanism mediated by both α - and β -
adrenergic receptors. J. Biol. Chem. 259: 15204-15211, 1984.
CLEMENT, O., PUCEAT, M., WALSH, M., AND VASSORT, G.: Protein kinase C
enhances myosi
-
- **Example 1.542. Physiol. 262: H754-H762, 1992.**
 COLLINS, E. M., WALSH, M. P., AND MORGAN, K. G.: Contraction of single vascular smooth muscle cells by phenylephrine at constant [Ca²⁺]_i. Am. J. Physiol. 262: H754-H vascular smooth muscle cells by phenylephrine at constant [Ca²⁺]_i. Am. J.
Physiol. 262: H754-H762, 1992.
COLUCCI, W. S.: In vivo studies of myocardial β-adrenergic receptor: pharmacology in patients with congestive he
- myocardial and vascular a-adrenergic receptor: pharmacology in patients with congestive heart failure. Circulation (Suppl. N2) 82: 44-51, 1990.
LUCCI, W. S., GIMBRONE, M. A., JR., AND ALEXANDER, R. W.: Regulation of myocar 88, 1984.

COLUCCI, W. S., GIMBRONR, M. A., JR., AND ALEXANDER, R. W.: Regulation

myocardial and vascular α -adrenergic receptor affinity. Effects of guan

nucleotides, cations, estrogen, and catecholamine depletion. Ci myocardial and vascular α -adrenergic receptor affinity. Effects of g
nucleotides, cations, estrogen, and catecholamine depletion. Circ. Res. 5
88, 1984.
NNRICODE, K. M., BREWER, K. A., AND EXTON, J. H.: Activation of p
-
- nucleotides, cations, estrogen, and catecholamine depletion. Circ. Res. 55: 78-

88, 1984.

CONRICODE, K. M., BREWER, K. A., AND EXTON, J. H.: Activation of phospho-

lipase D by protein kinase C. Evidence for a phosphoryl electrophysiological derangements. J. Clin. Investigate D by protein kinase C. Evidence for a phosphorylation-independent
mechanism. J. Biol. Chem. 267: 7199-7202, 1992.
CORR, P. B., SHAYMAN, J. A., KRAMER, J. B., AND KIPN adrenergic receptors in ischaemic cat myocardium. A potential mediator of
- electrophysiological derangements. J. Clin. Invest. 67: 1232-1236, 1981.
COTECCHIA, S. D., SCHWINN, D. A., RANDALL R. R., LEPKOWITZ, R. J., CARON M. J., AND KOBILKA, B. K.: Molecular cloning and expression of the cDNA for
-
- ventricle strip of the rabbit of the rabbit. J. Mol. Cell. Cardiol. 10: 207-219,

1978.

1978.

1988.

1988.

IROWN, J. H., BUXTON, I. L., AND BRUNTON, L. L.: α_1 -Adrenergic and musca-

Theoretic cholinergic stimulatio Unitative, U., P. P. P. P. P. P. W. P. A. J., Molecular cloning and expression of the clockers. 328-311-374, Molecular cloning and expression of the clockers M. J., AND KOBILKA, B. K.: Molecular cloning and expression of the cDNA
for the hamster α_1 -adrenergic receptor. Proc. Natl. Acad. Sci. USA 85: 7159-
7163, 1988.
CROMPTON, M., KESSAR, P., AND AL-NASSER, I.: The α -ad activation of the cardiac mitochondral Ca^{x+} uniporter and its role in the control of intramitochondrial Ca^{x+} univo. Biochem. J. 216: 333-342, 1983.
CULLING, W., PENNY, W. J., CUNLIFFE, G., FLORES, N. A., AND SHERIDAN,
	-
- phenylephrine in the presence of propranolol on force of contraction, slow
inward current and cyclic AMP content in the bovine heart. Br. J. Pharmacol.
BRUCKNER, R., N. OLE, B. R., BOLLAB, J. G., YUSHENG, W.,
BRUCKNER, R., HOLMBERG, S. W., AND NEEDLEMAN, P.: Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science (Wash. DC) 221: 71-73, 1983. CURRIE, M. G., GELLER, G. M., COLE, B. R., BOYLAN, J. G., YUSHENG, W., HOLMBERG, S. W., AND NEEDLEMAN, P.: Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science (Wash. DC) 221: 71-73, 1983. FOLLMBERG, S. W., AND NEEDLEMAN, P.: Bioactive cardiac substances: potent
vasorelaxant activity in mammalian atria. Science (Wash. DC) 221: 71-73,
1983.
CURRIE, M. G., AND NEWMAN, W. H.: Evidence for α₁-adrenergic recep
	-
	-
	- CURRIE, M. G., AND NEWMAN, W. H.: Evidence for α_1 -adrenergic recept
regulation of atriopeptin released from the isolated rat heart. Biochem. Bio
phys. Res. Commun. 137: 94–100, 1986.
DART, C., AND VAUGHAN-JONES, R. D. phys. Res. Commun. 137: 94-100, 1986.

	DART, C., AND VAUGHAN-JONES, R. D.: Na⁺-HCO₃⁻ symport in the sheep cardiac

	Purkinje fibers. J. Physiol. (Lond.) 451: 365-385, 1992.

	DEL BALZO, U., ROSEN, M. R., MALFATTO, G.,
- **251: H3'V-H313, 1985a.** CANGA, L., AND BRUNTON, L.: Action of the cardiac α_1 -adrenergic receptor:

EUXTON, I. L. O., AND BRUNTON, L.: α -Adrenergic receptors on rat ventricular

EUXTON, I. L. O., AND BRUNTON, L.: Purking fibers. J. Physiol. (Lond.) 451: 365-385, 1992.

DEL BALZO, U., ROSEN, M. R., MALFATTO, G., KAPLAN, L. M.,, AND STEINBERG,

S. F.: Specific α_1 -adrenergic receptor subtypes modulate catecholamine-in-

duced inc is the microsoftermic and reperfusion and reperfusion arrhythmias in isolated rat hearts. Possible evidence for an arrhythmogenic role of Na⁺/H⁺ exchange. Circ. Res. 66: 1156-1159, 1990.
DILLON, J. S., Gu, X. H., AND N
	-
	- exchange. Circ. Res. 66: 1156-1159, 1990.
DILLON, J. S., GU, X. H., AND NAYLER, W. G.: Alpha₁-adrenoceptor in the
ischemic and reperfused myocardium. J. Mol. Cell. Cardiol. 20: 725-735, 1988.
DIRKSEN, R. T., AND SHEU, S
	- ischemic and reperfused myocardium. J. Mol. Cell. Cardiol. 20: 725–735, 1988.
DIRKSEN, R. T., AND SHEU, S. S.: Modulation of ventricular action potential by α_1 -adrenoceptors and protein kinase C. Am. J. Physiol. 258: **BIRKSEN, R. T., SHIEH, R-C, WILLIFORD, D. J., AND SHEU S. S.:** α_1 **-Adrenoceptor**
stimulation produces a positive inotropic effect which occurs with a decrease
in the Ca-transient and the action potential duration in gui stimulation produces a positive inotropic effect which occurs with a decrease
in the Ca-transient and the action potential duration in guinea-pig ventricle.
Biophys. J. S. E., LEE, J. C., AND FRIPP, R. R.: Enhanced sensiti
	-
	-

ARMACOLO

170 TERZIC ET AL.
development of the coednergic chronotropic response in the ret heart. Circus transient outwo 170 TERZIC ET AL.
development of the a-adrenergic chronotropic response in the rat heart. Circ. transitions.
Res. 57: 415-423, 1985.
DUNNMON, P. M., IWAKI, K., HENDERSON, S. A., SEN, A., AND CHIEN, K. R.: FRELIN,

- 170 TERZIC
development of the α -adrenergic chronotropic response in the rat heart. Circ.
Res. 57: 415-423, 1985.
DUNNMON, P. M., IWAKI, K., HENDERSON, S. A., SEN, A., AND CHIEN, K. R.:
Phorbol esters induce immediate-e ECKEL, J., GERLACH-ESKUCHEN, E., AND REINAUER, H.: a-Adrenoceptor me-

GERLACH-ESKUCHEN, E., AND REINAUER, H.: a-Adrenoceptor me-

ECKEL, J., GERLACH-ESKUCHEN, E., AND REINAUER, H.: a-Adrenoceptor me-

ECKEL, J., GERLACH-E Phorbol esters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells. J. Mol. Cell. Cardiol. 22: 901-910, 1990.
REL. J., GERLACH-ESKUCHEN, E., AND REINAUER, H.: α -Adrenoce
- Scription in neonatal rat myocardial cells. J. Mol. Cell. Cardiol. 22: 901-910,
1990.
ECKEL, J., GERLACH-ESKUCHEN, E., AND REINAUER, H.: α -Adrenoceptor mediated increase in cytosolic free calcium in isolated cardiac myo
- ECKEL, J., GERLACH-ESKUCHEN, E., AND REINAUER, H.: α-Adrenoceptor mediated increase in cytosolic free calcium in isolated cardiac myocytes. J. Mol. Cell. Cardiol. 23: 617-625, 1991.

EDES, I., TALOSI, L., AND KRANIAS, E.
- DES, I., TALOSI, L., AND KRANIAS, E. G.: Effect of α -adrenergic agents and phorbol esters on phosphorylation of sarcolemmal proteins in beating guinear $\log \mathbf{b}$ and \mathbf{A} maximum coupling bearts. Cardiovasc. Res. phorbol esters on phosphorylation of sarcolemmal proteins in beating guinea
pig hearts. Cardiovasc. Res. 25: 510-515, 1991.
EL AMRANI, A. I. K., LECARPENTIER, Y., RIOU, B., AND POURNY, J. C.: Lusitropic
effect and modific **Pig hearts. Cardiovasc. Res. 25:** 510-515, 1991.

EL AMRANI, A. I. K., LECARPENTIER, Y., RIOU, B., AND POURNY, J. C.: Lusitropic

effect and modifications of contraction-relaxation coupling induced by α-

adrenergic stim
-
- Cardiol. 21: 669-680, 1989.

ELLINGSEN, O., VENGEN, O. A., AND ILEBEKK, A.: Myocardial potassium uptake

during *α* and *β*-adrenoceptor stimulation. Am. J. Physiol. 253: H799-H810,

1987.

ENDOH, M.: Regulation of myoca during α - and β -adrenoceptor stimulation. Am. J. Physiol. 253: H799-H810, 1987.
NDOH, M.: Regulation of myocardial contractility via adrenoceptors: differential DDH, M.: Regulation of myocardial contractility via ad 1987.

ENDOH, M.: Regulation of myocardial contractility via adrenoceptors: differential

mechanisms of α - and β -adrenoceptor-mediated actions. In New Aspects of

the Role of Adrenoceptors in the Cardiovascular Syst mechanisms of α - and β -adrenoceptor-mediated actions. In New Aspects of
the Role of Adrenoceptors in the Cardiovascular System, ed. by H. Grobecker,
A. Philippu, and K. Starke, pp. 78-105, Springer Verlag, Berlin, G the Role of Adrenoceptors in the Cardiovascular System, ed. by H. Grobecker,
A. Philippu, and K. Starke, pp. 78-105, Springer Verlag, Berlin, Germany,
1986.
ENDOH, M.: Signal transduction of myocardial α_1 -adrenoceptor
-
- ion channels, intracellular calcium, and force of contraction—a review. J. App
Cardiol. 6: 379–399, 1991.
NDOH, M., AND BLINKS, J. R.: Actions of sympathomimetic amines on the Ca
transients and contractions of rabbit myoc transients and contractions of rabbit myocardium: reciprocal changes in my-
ofibrillar responsiveness to Ca^{2+} mediated through α - and β -adrenoceptors.
Circ. Res. 62: 247-265, 1988.
ENDOH, M., HILLEN, B., AND SCHÜ
- **ENDOH, M., HILLEN, B., AND SCHOMANN, H. J.: Influence of temperature and frequency on the positive inotropic action of phenylephrine in the isolated rabbit papillary muscle. Arch. Int. Pharmacodyn. 228: 213-221, 1977. EN**
- FIF ALL EXTRIBUTE AND SCHOMANN, H. J.: Influence of temperature and
frequency on the positive inotropic action of phenylephrine in the isolated
rabbit papillary muscle. Arch. Int. Pharmacodyn. 228: 213-221, 1977.
CADIM, M frequency on the positive inotropic action of phenylephrine in the isolated rabbit papillary muscle. Arch. Int. Pharmacodyn. 228: 213-221, 1977.

NDOH, M., HIRAMOTO, T., ISHIHATA, A., TAKANASHI, M., AND INUI, J.: Myocardia ENDOH, M., HIRAMOTO, T., ISHIHATA, A., TAKANASHI, M., AND INUI, J.: Myo-
cardial α_1 -adrenoceptors mediate positive inotropic effect and changes in
phosphatidylinositol metabolism. Species differences in receptor distr phosphatidylinositol metabolism. Species differences in receptor distribution
and the intracellular coupling process in mammalian ventricular myocardium.
Circ. Res. 68: 1179-1190, 1991.
ENDOH, M., AND MOTOMURA, S.: Differ
-
- positive inotropic actions mediated via α and β -adrenoceptors in rabbit atria.
Life Sci. 25: 759-768, 1979.
ENDOH, M., AND SCHUMANN, H. J.: Frequency dependence of the positive
inotropic effect of methoxamine and
- inotropic effect of methoxamine and naphazoline mediated by α -adrenoceptors
in isolated rabbit papillary muscle. Naunyn Schmiedebergs Arch. Pharmacol.
287: 377-389, 1975.
IDOH, M., TAKANASHI, M., AND NOROTA, I.: Role o **ENDOH, M., TAKANASHI, M., AND NOROTA, I.: Role of** α_{1A} **adrenoceptor subtype
in production of the positive inotropic effect mediated via myocardial** α_1 **
adrenoceptors in the rabbit papillary muscle: influence of sel**
- eur. J. Pharmacol. 345: 578-585, 1992.

ENDOH, M., AND YAMASHITA, S.: Adenosine antagonizes the positive inotropic

ENDOH, M., AND YAMASHITA, S.: Adenosine antagonizes the positive inotropic

action mediated via β but
- action mediated via β- but not α-adrenoceptors in the rabbit papillary muscle.
Eur. J. Pharmacol. 65: 445-448, 1980.
ENDOU, M, HATTORI, Y., TOHSE, N., AND KANNO, M.: Protein kinase C is not
involved in α₁-adrenoceptor-m
- and ventricular muscle preparations from rats. Naunyn Schmiedeberg
 Arch. Physiol. **260:** H27-H36, 1991.
 **ERTL, R., JAHNEL, U., NAWRATH, H., CARMELIET, E., AND VEREECKE, J.:

Differential electrophysiologic and inotropi** Differential electrophysiologic and inotropic effects of phenylephrine in atrial
and ventricular heart muscle preparations from rats. Naunyn Schmiedebergs
Arch. Pharmacol. 344: 574-581, 1991.
EXTON, J. H.: Signalling throu
-
-
-
-
- 2976, 1985.

2976, 1985.

PABIATO, A.: Inositol (1,4,5)-triphoshate-induced release of Ca^{2+} from the sarco-

plasmic reticulum of skinned cardiac cells. Biophys. J. 49: 190a, 1986.

FABIATO, A., AND FABIATO, F.: Effect sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J.
Physiol. (Lond.) 276: 233-255, 1978.
FAILLI, P., FAZZINI, A., FRANCONI, F., STENDARDI, I., AND GIOTTI, A.: Taurine
antagonizes the increase in i Physiol. (Lond.) 276: 233-255, 1978.
FAILLI, P., FAZZINI, A., FRANCONI, F., STENDARDI, I., AND GIOTTI, A.: Taurine
antagonizes the increase in intracellular calcium concentration induced by a-
adrenergic stimulation in fre
- 688, 1992.
- **FEDIDA, D., AND BOUCHARD, R. A.: Mechanisms for the positive inotropic effect** of α₁-adrenoceptor stimulation in rat cardiac myocytes. Circ. Res. 71: 673-688, 1992.
ERDIDA, D., BRAUN, A. P., AND GILES, W. R.: α₁-Adr 688, 1992.

FEDIDA, D., BRAUN, A. P., AND GILES, W. R.: α_1 -Adrenoceptors reduce back-

ground K⁺ current in rabbit ventricular myocytes. J. Physiol. (Lond.) 441:

663-684, 1991.

FEDIDA, D., SHIMONI, Y., AND GILES,
-
-

-
- ET AL.

transient outward current in rabbit atrial myocytes. J. Physiol. (Lond.) 423:

257-277, 1990.

FRELIN, C., VIGNE, P., LADOUX, A., AND LAZDUNSKI, M.: The regulation of the

intracellular pH in cells from vertebrate intracellular pH in cells from vertebrates. Eur. J. Biochem. 174: 3-14, 1988.
 FRELIN, C., VIGNE, O. AND LAZDUNSKI, M.: The role of the Na⁺/H⁺ exchange system in cardiac cells in relation to the control of the intern
-
- **between spontaneously hypertensive and normotensive rats. Eur. J. Pharmacol. 19:** 1-11, 1972.
**FULLER, S. J., FATANAKI, C. J., HATCHETT, R. J., AND SUGDEN, P. H.: Acute
FULLER, S. J., CAITANAKI, C. J., HATCHETT, R. J.,** JUWARA, M., KUCHII, M., AND SHIBATA, S.: Differences of cardiac reactivity
between spontaneously hypertensive and normotensive rats. Eur. J. Pharmacol.
19: 1-11, 1972.
LLER, S. J., GAITANAKI, C. J., HATCHETT, R. J., AND SU
- 19: 1-11, 1972.

FULLER, S. J., GAITANAKI, C. J., HATCHETT, R. J., AND SUGDEN, P. H.: Acute
 α_1 -adrenergic stimulation of cardiac protein synthesis may involve increased

intracellular pH and protein kinase activity.
-
- adult rats. Stimulation of translation is mediated through the α_1 -adrenoceptor.
Biochem. J. 266: 727-736, 1990.
GAMBASSI, G., BERENHOLTZ, S., ZIMAN, B., LAKATTA, E. G., AND CAPOGROSSI,
M. C.: Opposing effects of α_{1 α_1 -adrenergic stimulation in adult rat myocytes. Circulation 84: II-403, 1991.
GAMBASSI, G., SPURGEON H. A., LAKATTA, E. G., BLANK, P. S., AND CAPO-GROSSI, M. C.: Different effects of α - and β -adrenergic stimula The increase in rate in rate of α - and β -adrenergic stimulation on cytosolic pH and myofilament responsiveness to Ca^{2+} in cardiac myocytes. Circ. Res. 71: 870-882, 1992.
17: 870-882, 1992.
1966. Low Hugginst in r
- T1: 870–882, 1992.
GAUT, Z. N., AND HUGGINS, C. G.: Effect of epinephrine on the metabolism of
the inositol phosphatides in rat heart in vivo. Nature (Lond.) 212: 612–613,
1966.
GILMAN, A. G.: G-proteins: transducers of re IUT, Z. N., AND HUGGINS, C. G.: Eff
the inositol phosphatides in rat heart
1966.
LMAN, A. G.: G-proteins: transducers of
Biochem. 56: 615-649, 1987.
OTTI, A., LEDDA, F., AND MANNAIO
-
- Cardiol. 6: 379-399, 1991.

ENDOH, M., AND BLINKS, J. R.: Actions of sympathomimetic amines on the Ca²⁺

transients and contractions of rabbit myocardium: reciprocal changes in my.

ofibrillar responsiveness to Ca²⁺ m the inositol phosphatides in rat heart in vivo. Nature (Lond.) 212: 612-613,
1966.
GILMAN, A. G.: G-proteins: transducers of receptor-generated signals. Annu. Rev.
Biochem. 56: 615-649, 1987.
GIOTTI, A., LEDDA, F., AND MA isoprenaline, in combination with α - and β -receptor blocking substances, on
the action potential of cardiac Purkinje fibers. J. Physiol. (Lond.) 299: 99-
113, 1973.
GOVIER, W. C.: Myocardial α -adrenergic receptor
	- GOVIER, W. C.: Myocardial α -adrenergic receptors and their role in the production of a positive inotropic effect by sympathomimetic agents. J. Pharmacol. Exp. Ther. 159: 82-90, 1968. the action potential of cardiac Purkinje fibers. J. Physiol. (Lond.) 299: 99-
113, 1973.
GOVIER, W. C.: Myocardial α -adrenergic receptors and their role in the production
of a positive inotropic effect by sympathomimeti Toyler, W. C.: Myocardial α -adrenergic receptors and their role in the production
of a positive inotropic effect by sympathomimetic agents. J. Pharmacol. Exp.
Ther. 159: 82-90, 1968.
GROB, G., AND HANFT, G.: 5-Methyl-ur
	-
	-
	-
	- between α_1 -adrenoceptor subtypes. Br. J. Pharmacol. 95: 568, 1988.
GROß, G., HANFT, G., AND RUGEVICS, C. U.: 5-Methyl-urapidil discriminates
between subtypes of the α_1 -adrenoceptor. Eur. J. Pharmacol. 151: 330–335, comparison of agonist binding and positive inotropic response. Naunyn

	Schmiedebergs Arch. Pharmacol. 338: 582-588, 1988b.

	GROB, G., AND LUES, I.: Thyroid-dependent alterations of myocardial receptors

	and adrenceeptor-me
	- GUICHENEY, P., GARAY, R. P., LEVY-MARCHAL, C., AND MEYER, P.: Biochemical
evidence for presynaptic binding. Proc. Natl. Acad. Sci. USA 75: 6285-6289,
1978.
GUO, H., WASSERSTROM, J. A., AND ROSENTHAL, J. E.: Effect of cate
	- 1978.

	GUO, H., WASSERSTROM, J. A., AND ROSENTHAL, J. E.: Effect of catecholamines

	on intracellular pH in sheep cardiac Purkinje fibers. J. Physiol. (Lond.) 458:

	289-306, 1992.

	GUSE, A. H., BERG, I., AND GERCKEN, G.: Me
	- 20. H., WASSERSTROM, J. A., AND ROSENTHAL, J. E.: Effect of catecholamines
on intracellular pH in sheep cardiac Purkinje fibers. J. Physiol. (Lond.) 458:
289–306, 1992.
 σ , A. H., BERG, I., AND GERCKEN, G.: Metabolism of on intracellular pH in sheep cardiac Purkinje fibers. J. Physiol. (Lond.) 45
 GUSE, A. H., BERG, I., AND GERCKEN, G.: Metabolism of inositol phosphate
 α_1 -adrenoceptor-stimulated and homogenized cardiac myocytes of a EXE A. H., BERG, I., AND GERCKEN, G.: Metabolism of inositol phospha α_1 -adrenoceptor stimulated and homogenized cardiac myocytes of adult Biochem. J. 261: 89–92, 1989.

	SER, A. H., BERG, I., AND GERCKEN, G.: Inhibition
	-
- and ventrucular heart muscle preparations from rats. Naunyn Schmiedebergs

ANN, C., ABEL, P. W., AND MINNEMAN, K. P.: α_1 -Adrenoceptor linked to different

ANN, C., ABEL, P. W., AND MINNEMAN, K. P.: α_1 -Adrenoceptor α_1 -adrenoceptor stimulated and homogenized cardiac myocytes of adult rats.
Biochem. J. 261: 89-92, 1989.
GUSE, A. H., BERG, I., AND GERCKEN, G.: Inhibition of α_1 -adrenoceptor-mediated
inositol phosphate accumulati
	-
	- **HAN, C., AND MINNEMAN, K. P.: Interaction of subtype-selective antagonists** with α_1 -adrenergic receptor binding in rat tissues. Mol. Pharmacol. 40: 531–538, 1991.
HAN, H. M., ROBINSON, R. B., BILEZIKIAN, J. P., AND S with α_1 -adrenergic receptor binding in rat tissues. Mol. Pharmacol. 40: 531-
538, 1991.
HAN, H. M., ROBINSON, R. B., BILEZIKIAN, J. P., AND STEINBERG, S. F.:
538, 1991.
HAN, H. M., ROBINSON, R. B., BILEZIKIAN, J. P.,
	- Levelopmental changes in guanine nucleotide regulatory proteins in the rat
myocardial α_1 -adrenergic receptor complex. Circ. Res. 65: 1763-1773, 1989.
HANDA, Y., WAGNER, J., INUI, J., AVERESCH, H., AND SCHÜMANN, H.: Ef
	- my Payman american in the rabbit papillary muscle. Naunyn Schmid-
debergs Arch. Pharmacol. 318: 330–335, 1982.
HARTMANN, H. A., MAZZOCA, N. J., KLEIMAN, R. B., AND HOUSER, S. B.: Effects
of phenylephrine on calcium current HARTMANN, H. A., MAZZOCA, N. J., KLEIMAN, R. B., AND HOUSER, S. B.: Effects
of phenylephrine on calcium current and contractility of feline ventricular
myocytes. Am. J. Physiol. 255: H1173-H1180, 1988.
HARTMANN, M., AND SC
	- of phenylephrine on calcium current and contractility of feline ventricular
myocytes. Am. J. Physiol. 255: H1173-H1180, 1988.
HARTMANN, M., AND SCHRADER, J.: Protein kinase C phosphorylates a 15 kDa
protein but not phosph HARTMANN, M., AND SCHRADER, J.: Protein kinase C phosphorylates a 15 kDa
protein but not phospholamban in intact rat cardiac mycotes. Eur. J. Phar-
macol. 226: 225-231, 1992.
HEATHERS, G. P., CORR, P. B., AND RUBIN L. J.:
	-
	- inositol $(1,3,4,5)$ -tetrakisphosphate in response to α_1 -adrenergic stimulation in adult cardiac myocytes. Biochem. Biophys. Res. Commun. 156: 485–492, 1988. HeArnergic stimulation in Cardiac myocytes exposed to hypox

ARMACOLO

spet

 $\overline{\mathbb{O}}$

- **CARDIAC** α_1 -ADP
HEATHERS, G. P., YAMADA, K. A., KANTER, E. M., AND CORR, P. B.: Long-chain
acylcarnitines mediate the hypoxia-induced increase in α_1 -adrenergic receptors CARDIAC α_1 -ADRE

HEATHERS, G. P., YAMADA, K. A., KANTER, E. M., AND CORR, P. B.: Long-chain

acylcarnitines mediate the hypoxia-induced increase in α_1 -adrenergic receptors

on adult canine myocytes. Circ. Res. 61:
- HEATHERS, G. P., YAMADA, K. A., KANTER, E. M., AND CORR, P. B.: Long-chain
acylcaritiens mediate the hypoxia-induced increase in α_1 -adrenergic receptors
on adult canine myocytes. Circ. Res. 61: 735-746, 1987.
HEIJNIS,
-
- a-adrenoceptor stimulation in isolated working hearts from diabetic rats J.
Cardiovasc. Pharmacol. 20:559-559, 1992
HENRICH, C. G., AND SIMPSON, P. C.: Differential acute and chronic response of
protein kinase C in culture protein kinase C in cultured neonatal rat heart myocytes to α_1 -adrenergic and phorbol ester stimulation. J. Mol. Cell. Cardiol. 20: 1081-1085, 1988. HESCHELER, J., NAWRATH, H., TANG, M., AND TRAUTWEIN, W.: Adrenocepto ESCHELER, J., NAWRATH, H., TANG, M., AND TRAUTWEIN, W.: Adrenoceptoinediated changes of excitation and contraction in ventricular heart muscless. WETT, K. W., AND ROSEN, M. R.: Developmental changes in the rabbit sinuse we HESCHELER, J., NAWRATH, H., TANG, M., AND TRAUTWEIN, W.: Adrenoceptor-
mediated changes of excitation and contraction in ventricular heart muscle
from guinea-pigs and rabbits. J. Physiol. (Lond.) 397: 657-670, 1988.
HEWETT
-
- From guinea-pigs and rabbits. J. Physiol. (Lond.) 397: 657–670, 1988.
HEWETT, K. W., AND ROSEN, M. R.: Developmental changes in the rabbit sinus
node action potential and its response to adrenergic agonists. J. Pharmacol.
 and cyclic AMP degradation in ventricular myocytes. Pharmacologist 33: 189, 1991.

LAL-DANDAN, R., CATON, J. R., STALMASTER, C., KANTER, J. R., AND BRUN-

TON, L. L.: Specific α_1 -receptor subtypes regulate phosphononst HILAL-DANDAN, R., CATON, J. R., STALMASTER, C., KANTER, J. R., AND BRUNTON, L. L.: Specific α_1 -receptor subtypes regulate phosphoinositide hydrolysis and cyclic AMP degradation in ventricular myocytes. Pharmacologist 3 TON, L. L.: Specific α_1 -receptor subtypes regulate phosphoinositide hydrolysis
and cyclic α_1 -receptor subtypes regulate phosphoinositide hydrolysis
and cyclic AMP degradation in ventricular myocytes. Pharmacologis
-
- H.L., C. M., WIMSATT, D. K., BRIERLEY, G. P., AND ALTSCHULD, R. A.: 1N
production by ATP depleted adult rat heart cells. Effects of glycolysis and
adrenergic stimulation. Circ. Res. 65: 754–760, 1989.
DMCY, C. J., VATNER,
- production by ATP depleted adult rat heart cells. Effects of glycolysis and α_1 -
adventorion by ATP depleted adult rat heart cells. Effects of glycolysis and α_1 -
advenergic stimulation. Circ. Res. 65: 754–760, 1989
- regulation in the heart in pathophysiologic states: abnormal adrenergic responsiveness in cardiac disease. Annu. Rev. Physiol. 53: 137–159, 1991.

HORACKOVA, M.. BERESEWICZ, A., ROWDEN, G., AND WLKINNSON, M.: Neuro-

humor simulation of excitation-contraction coupling in ventricular myocytes
from cardiomyopathic hamsters. Cardiovasc. Res. 25: 1023-1034, 1991.
HOUSMANS, P. R.: Effects of dexmedetomidine on contractility, relaxation, and
intra nous and subsets. P. R.: Effects of dermedetomidine on contractility, relaxation, and intracellular calcium transients of isolated ventricular myocardium. Anesthe siology 73: 919-922, 1990.
EDA, U., TSURUYA, Y., AND YAGINU
- IM, TSURUYA, Y., AND YAGINUMA, T.: α_1 -Adrenergic stimulation is

Coupled to cardiac myocyte hypertrophy. Am. J. Physiol. 260: H953-H956,

1991.

M., M-J, AND GRAHAM, R. M.: A novel guanine nucleotide binding protein

c
- **EDA, U., TSURUYA, Y., AND YAGINUMA, T.:** α_1 **-Adrenergic stimulation is coupled to cardiac myocyte hypertrophy. Am. J. Physiol. 260: H953–H956, 1991.**

1991.

coupled to the α_1 -adrenergic receptor. I. Identification coupled to cardiac myocyte hypertrophy. Am. J. Physiol. 260: H953-H956, 1991.

1, M-J, AND GRAHAM, R. M.: A novel guanine nucleotide binding protein

coupled to the α_1 -adrenergic receptor. I. Identification by photola IM, M-J, AND GRAHAM, R. M.: A novel guanine nucleotide binding protein coupled to the α_1 -adrenergic receptor. I. Identification by photolabeling of membrane and ternary complex preparation. J. Biol. Chem. **265**: 18944
- coupled to the a₁-adrenergic receptor. I. Identification by photolabeling
membrane and ternary complex preparation. J. Biol. Chem. 265: 18944-189
1, M-J., RIECK, R. P., AND GRAHAM, R. M.: A novel guanine nucleotide-bind
 IM, M-J., RIECK, R. P., AND GRAHAM, R. M.: A novel guanine nucleotide-binding protein coupled to the α_1 **-adrenergic receptor. II. Purification, characterization,
and reconstitution. J. Biol. Chem. 265: 18952-18960, 19**
-
- INSEL, P. A., WEISS, B. A., SLIVKA, S. R., HOWARD, M. J., WAITE, J. J., AND GODSON, C. A.: Regulation of phospholipase A₂ by receptors in MDCK-D1 cells. Biochem. Soc. Trans. 19: 329-333, 1991.
IWAKI, K., SUKHATME, V. P., SEL, P. A., WEISS, B. A., SLIVKA, S. R., HOWARD, M. J., WAITE, J. J., AND GODSON, C. A.: Regulation of phospholipase A_2 by receptors in MDCK-D1 cells. Biochem. Soc. Trans. 19: 329–333, 1991.
ARI, K., SUKHATME, V. P., S GODSON, C. A.: Regulation of phospholipase A_2 by receptors in MDCK-DI
cells. Biochem. Soc. Trans. 19: 329-333, 1991.
AKI, K., SUKHATME, V. P., SHUBETTA, H. E., AND CHIEN, K. R.: α - and β .
Adtenergic stimulation i
- 1990.

IWAKURA, K., HORI, M., WATANABE, Y, KITABATAKE, A, CRAGOE, E. J., YOSHIDA, H., AND KAMADA, T.: α_1 -Adrenoceptor stimulation increases intracellular

pH and Ca²⁺ in cardiomyocytes through Na⁺/H⁺ and Na⁺/C
- IDA, H., AND KAMADA, T.: α_1 -Adrenoceptor stimulation increases intracellular

JH and Ca²⁺ in cardiomyocytes through Na⁺/H⁺ and Na⁺/Ca²⁺ exchange. Eur.

J. Pharmacol. 186: 29-40, 1990.

JAHNEL, U., JAKOB, H.,
- efects of *a*-adrenoceptor stimulation in human isolated atrial heart muscle.
Naunyn Schmiedebergs Arch. Pharmacol. 346: 82-87, 1992a.
HNEL, U., NAWRATH, H., CARMELIET, E., AND VEREECKE, J.: Depolarization-
induced influx
- efects of α -adrenoceptor stimulation in human isolated atral heart muscle.

Naunyn Schmiedebergs Arch. Pharmacol. 346: 82-87, 1992a.

JAHNEL, U., NAWRATH, H., CARMELIET, E., AND VEREECKE, J.: Depolarization-

induced i AHNEL, U., NAWRATH, H., SHIEH, R.-C., SHARMA, V. K., WILLIFORD, D. J., muscarinic K* channels. Prog. Neurobiol. 39: 229-246, 1992.

ADR SHEU, S.-S.: Modulation of cytosolic free calcium concentration by α_1 .
 ALCOB, H.
-
- KAGIYA, T., HORI, M., IWAKURA, K., IWAI, K., SATO, H., TAKASHIMA, S., KITABAKE, A., INOUE, M., AND KAMADA, T.: α_1 -Adrenergic signal transduction JAKOB, H., NAWRATH, H., AND RUPP, J.: Adrenoceptor-mediated changes of
action potential and force of contraction in human isolated ventricular heart
muscle. Br. J. Pharmacol. 94: 584-590, 1988.
KAGYA, T., HORI, M., WAKURA
- tors: Signal Transduction, Ionic Channels and Effector Organs, ed. by M.
Fujiwara, T. Sugimoto, and K. Kogure, pp. 270–275, Excerpta Medica, Amsterdam, the Netherlands, 1992.
KITABAKE, A., INOUE, M., AND KAMADA, T.: Role o tors: Signal Transduction, Ionic Channels and Effector Organs, ed. by M.
Fujiwara, T. Sugimoto, and K. Kogure, pp. 270-275, Excerpta Medica, American
metrican hamster. Hone, M., Iwan, K., Iwai, K., WaTaNaBE, Y., UCHIDA, H. KAGIYA, T., HORI, M., IWAKURA, K., IWAI, K., WATANABE, Y., UCHIDA, H.,
KITABAKE, A., INOUE, M., AND KAMADA, T.: Role of increased α_1 -adrenergic
activity in cardiomyopathic Syrian hamster. Am. J. Physiol. 260: H80-H88,

- activity in cardiomyopathic Syrian hamster. Am. J. Physiol. 260: H80-H88,
1991a.
KAGIYA, T., ROCHA-SINGH, K. J., HONBO, N., AND KARLINER, J. S.: α_1 -Adre-
noceptor mediated signal transduction in neonatal rat ventricula
-
- NLA, K., AND VAUGHAN JONES, R. D.: Influence of sodium-hydrogen exchange
on intracellular pH, sodium and tension in cardiac Purkinje fibres. J. Physiol.
(Lond.) 390: 93-108, 1987.
MKU, T., LAKATTA, E., AND FILBURN, C.: α
- ENOCEPTORS

XARIYA, K. I., KARNS, L. R., AND SIMPSON, P. C.: Expression of a constitutively

activated mutant of the β -isozyme of protein kinase C in cardiac myocytes

stimulates the promoter of the β -myosin heavy c EXAMPLE 10024-10026, 1991. R., AND SIMPSON, P. C.: Expression of a constitutively activated mutant of the β -isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the β -myosin heavy chain isogene
- activated mutant of the β -isozyme of protein kinase C in cardiac myocytes
stimulates the promoter of the β -myosin heavy chain isogene. J. Biol. Chem.
266: 10023-10026, 1991.
heart metabolism: effects on adenosine cy 266: 10023-10026, 1991.

2ELY, S. L., CORBIN, J. D., AND LINCOLN, T.: α_1 -Adrenergic involvement in

heart metabolism: effects on adenosine cyclic 3'5' monophosphate, adenosine

cyclic 3'5' monophosphate-dependent prote heart metabolism: effects on adenosine cyclic 3',5' monophosphate, adenosine cyclic 3'5' monophosphate, and glucose transport. Mol. Pharmacol. 13: 965–975, 1977. KENTISH, J. C., BARSOTTI, R. J., R., P., P., R., R., N. P.,
- FERENCZI, M. A.: Calcium release from cardiac sarcoplasmic reticulum induced
by photorelease of calcium or ins $(1,4,5)IP_a$. Am. J. Physiol. 258: H610-H615,
1990. cyclic 3'5' monophosphate-dependent protein kinase, guanosine cyclic 3'5'
monophosphate, and glucose transport. Mol. Pharmacol. 13: 965-975, 1977.
KENTISH, J. C., BARSOTTI, R. J., LEA, T. J., MULLIGAN J. P., PATEL, J. R., KENTISH, J. C., BARSOTTI, R. J., LEA, T. J., MULLIGAN J. P., PATEL, J. R., AND
FERENCZI, M. A.: Calcium release from cardiac sarcoplasmic reticulum induced
by photorelease of calcium or ins(1,4,5)IP₃. Am. J. Physiol. 258
-
- HALIL, R. A., LAJOIE, C. A., RESNICK, M. S., AND MORGAN, K. G.: Heterogeneous distribution and translocation of protein kinase C isozymes in vascular smooth muscle cells. Biophys. J. 61: A159, 1992.
HAN, V., BLOBE, G. C., neous distribution and translocation of protein kinase C isozymes in vascular smooth muscle cells. Biophys. J. **61**: A159, 1992.
HAN, V., BLOBE, G. C., AND HANNUN, Y. A.: Activation of protein kinase C by oleic acid. Deter smooth muscle cells. Biophys. J. **61:** A159, 1992.

KHAN, V., BLOBE, G. C., AND HANNUN, Y. A.: Activation of protein kinase C by

oleic acid. Determination and analysis of inhibition by detergent micelles and

physiologic oleic acid. Determination and analysis of inhibition by detergent micelles and
physiologic membranes: requirement for free oleate. J. Biol. Chem. 287: 3607-
3612, 1992.
KIKKAWA, U., KISHIMOTO, A., AND NISHIZUKA, Y.: The pr
-
-
- KIM, D., LIANG, B. T., AND SMITH, T. W.: A pertussis toxin-sensitive G-protein
is involved in α_1 -adrenergic contractile response in rat cardiac myocytes.
Circulation 76: 252A, 1987.
KIM, D., AND SMITH, T. W.: Effects KIM, D., AND SMITH, T. W.: Effects of amiloride and ouabain on contractile state, Ca and Na fluxes, and Na content in cultured chick heart cells. Mol. Pharmacol. 29: 363-371, 1986.
KIMBALL, K. A., CORNETT, L. E., STEIFEN,
-
- state, Ca and Na fluxes, and Na content in cultured chick heart cells. Mol.

Pharmacol. 29: 363-371, 1986.

KIMBALL, K. A., CORNETT, L. E., STEIFEN, E., AND KENNEDY, R. H.: Aging:

changes in cardiac α_1 -adrenoceptor re Pharmacol. 208: 231-238, 1991.
KIMURA, S., CAMERON, J. S., KOZLOVSKIS, P. L., BASSET, A. L., AND MYEBERG,
R. J.: Delayed after depolarization and triggered activity induced in feline
level. Circulation 70: 1074-1082, 1984.
- Purkinje fibers by a-adrenergic stimulation in the presence of elevated calcium
level. Circulation 70: 1074–1082, 1984.
NOWLTON, K. U., BARACCHINI, E., ROSE, R. S., HARRIS, A. N., HENDERSON,
S. A., EVANS, S. M., GLEMBOTSKI adrenergic stimulation of neonatal rat ventricular cells. J. Biol. Chem. 266:
adrenergic stimulation of the matrix of neutricular cells. A., FI and Chem. C. C., AND CHIEN, K.: Coregulation of the
attricular rative factor a KNOWLTON, K. U., BARACCHINI, E., ROSE, R. S., HARRIS, A. N., HENDERSON,
S. A., EVANS, S. M., GLEMBOTSKI, C. C., AND CHIEN, K.: Coregulation of the
atrial natriuretic factor and cardiac myosin light chain 2 genes during a-

-
- KOHL, C., SCHMITZ, W., SCHOLZ, H., AND SCHOLZ, J.: Evidence for the existence
of inositol tetrakisphosphate in mammalian heart. Effect of α_1 -adrenoceptor
stimulation. Circ. Res. 66: 580-583, 1990.
KOHL, C., SCHMITZ, W
- Contractility in adult rat ventricular myocytes. Role of interior incided trively phosphate in the human heart. J. Cardiovasc. Pharmacol. 13: 324-327, 1989.
 induced by activation of the protein kinase C-dependent Na⁺/H KRAMER, B. K., SMITH, T. W., AND KELLY, R. A.: Endothelin and increased
contractility in adult rat ventricular myocytes. Role of intracellular alkalosis
induced by activation of the protein kinase C-dependent Na⁺/H⁺ ex contractility in adult rat ventricular myocytes. Role of intracellu
induced by activation of the protein kinase C-dependent Na⁺/H⁻
Circ. Res. 68: 269-279, 1991.
JNOS, G., VERMES-KUNOS, I., AND NICKERSON, M.: Effects of induced by activation of the protein kinase C-dependent Na⁺/H^{*} exchanger.
Circ. Res. 68: 269-279, 1991.
KUNOS, G., VERMES-KUNOS, I., AND NICKERSON, M.: Effects of thyroid state
on adrencoeptor properties. Nature (Lond.
-
- Circ. Res. 68: 269–279, 1991.

Circ. Res. 68: 269–279, 1991.

JNOS, G., VERMES-KUNOS, I., AND NICKERSON, M.: Effects

on adrenoceptor properties. Nature (Lond.) 250: 779–781, 19

JRACHI, Y.: The effects of intracellar prot
- KURACHI, Y., ITO, H., INC., I., AND UI, I., AND UI, M.: a-
KURACHI, Y.: The effects of intracellular p KURACHI, Y.: The effects of intracellular protons on the electrical activity of
single ventricular cells. Pflugers Arch. 394: 264-270, 1982.
KURACHI, Y., ITO, H., SUGIMOTO, T., SHIMIZU, T., MIKI, I., AND UI, M.: a-
Adrener
-
-
- acid metabolites. Pflugers Arch. 414: 102-104, 1989.

KURACHI, Y., TUNG, R. T., Iro, H., AND NAKAJIMA, T.: G-protein activation of

muscarinic K* channels. Prog. Neurobiol. 39: 229-246, 1992.

KURTZ, T., YAMARA, K. A., DA system and arrhythmias in ischaemic heart disease. Eur. Heart J. (Suppl. F)
12: 88-98, 1991.
KUSHIDA, H., HRRAMOTO, T., AND ENDOH, M.: The preferential inhibition of α_1 -
over β -adrenoceptor-mediated positive inotro
- antagonists in the rabbit papillary muscle. Naunyn Schmiedebergs Arch.
Pharmacol. 341: 206-214, 1990.
9HIDA, H., HIRAMOTO, T., SATOH, H., AND ENDOH, M.: Phorbol ester does
not mimic, but antagonizes, the *a*-adrenoceptor m LACHANCE, HANNOTO, T., SATOH, H., AND ENDOH, M.: Phorbol ester does
not mimic, but antagonizes, the *a*-adrenoceptor mediated positive inotropic
effect in the rabbit papillary muscle. Naunyn Schmiedebergs Arch. Pharmacol.
 not minic, but antagonizes, the a-adrenoceptor mediated positive inotropic
not minic, but antagonizes, the a-adrenoceptor mediated positive inotropic
effect in the rabbit papillary muscle. Naunyn Schmiedebergs Arch. Pharma
-
- LACHANCE, D., AND GARCIA, R.: Synergism of atrial pressure and adrenergic stimulation for ANF release in the rat. Regul. Pept. 34: 55-60, 1991.
LAGADIC-GOSSMANN, D., BUCKLER, K. J., AND VAUGHAN-JONES, R. D.: Role of bicarb
- bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ven-
tricular myocyte. J. Physiol. (Lond.) 458: 361-384, 1992a.
LAGADIC-GOSSMANN, D.; AND FEUVRAY, D.: Decreased sensitivity of contraction
to change Physiol. (Lond.) 458: 361-384, 1992a.

LAGADIC-GOSSMANN, D., AND FEUVRAY, D.: Decreased sensitivity of contraction

to changes of intracellular pH in papillary muscle from diabetic rat hearts. J.

Physiol. (Lond.) 422: 481
- to changes of intracellular pH in papillary muscle from diabetic rat hearts. J.
Physiol. (Lond.) 422: 481-497, 1990.
LAGADIC-GOSSMANN, D., VAUGHAN-JONES, R. D., AND BUCKLER, K. J.: Adren-
aline and extracellular ATP switch
- GADIC-GOSSMANN, D., VAUGHAN-JONES, K. D., AND BUCKLER, K. J.: Adrenaline and extracellular ATP switch between two modes of acid extrusion in the guinea-pig ventricular myocyte. J. P., Davis In and a subseque of myocardial aine and extracellular ATP switch between two modes of acid extrusion in
the guinea-pig ventricular myocyte. J. Physiol. (Lond.) 458: 385-407, 1992b.
LANDZERG, J. S., PARKER, J. D., GAUTHIER, D. F., AND COLUCCI, W. S.: Eff
-

ARMACOLO

172 TERZIC ET AL.

eleium mediated action potential in guinea pir ventrigular muscle. Br. J. section potential

- Calcium mediated action potential in guinea-pig ventricular muscle. Br. J. Pharmacol. 69: 565-571, 1980.
LEDDA, F., MARCHETTI, P., AND MUGELLI, A.: Studies of the positive inotropic
effect of phenylephrine: a comparison wi effect of phenylephrine: a comparison with isoprenaline. Br. J. Apple Pharmacol. 69: 565-571, 1980.

EPharmacol. 69: 565-571, 1980.

EPHARMACHETTI, P., AND MUGELLI, A.: Studies of the positive inotropic

effect of phenylep calcium mediated action potential in guinea-pig ventricular muscle. Br. J.
 LEDDA, F., MARCHETTI, P., AND MUGELLI, A.: Studies of the positive inotropic MI

effect of phenylephrine: a comparison with isoprenaline. Br. J.
- **CHIEN, MARCHETTI, P., AND MUGELLI, A.: Studies of the positive inotropic** Minimeter of phenylephrine: a comparison with isoprenaline. Br. J. Pharmacol. 54:
 CHIEN, H. R.: ER. H. REVINOLD, S. R., DUNNMON, P., YUAN, D., AN 83-90, 1975.

E., H. R., HENDERSON, S. A., REYNOLD

CHIEN, K. R.: α_1 -Adrenergic stimulat

neonatal rat myocardial cells. Effects on

J. Biol. Chem. 263: 7352-7358, 1988.

E. J. H., AND ROSEN, M. R.: Modulati LEE, H. R., HENDERSON, S. A., REYNOLD, S. R., DUNNMON, P., YUAN, D., AND MOGHIEN, K. R.: α_1 -Adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myoein light chain-2 gene ex
-
- CHIEN, A. R.: α_1 -Adrenergic stimulation of cardiac gene transcription in

neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression.

J. Biol. Chem. 263: 7352-7358, 1988.

LEE, J. H., AND ROSEN, M
- LEE, J. H., AND ROSEN, M. R.: Modulation of delayed afterdepolarizations by α_1 -adrenergic receptor subtypes. Cardiovasc. Res., in press, 1993.
LEE, J. H., STEINBERG, S. F., AND ROSEN, M. R.: A WB-4101-sensitive α_1 -
- 379, Kluwer Academic Publishers, Boston, MA, 1989.
LEVY, M. N., AND MARTIN, P. J.: Autonomic neural control of cardiac function.

16 Devil, AND ROULEAU, J. L.: a,-Adrenergic stimulation increases the V_{Bern} of

16 ISON, K In Physiology and Pathophysiology of the Heart, ed. by N. Sperelakis, pp. 361–379, Kluwer Academic Publishers, Boston, MA, 1989.

LI, K., AND ROULEAU, J. L.: α_1 -Adrenergic stimulation increases the V_{ues} of isolated m 379, Kluwer Academic Publishers, Boston, MA, 1989.

Li, K., AND ROULEAU, J. L.: α_1 -Adrenergic stimulation increases the V_{uen} of

isolated myocardial papillary muscles. Can. J. Physiol. Pharmacol. 69: 1804-

1809, 19
- H908, 1987. LIMAS, C. J., AND LIMAS, C.: Altered intracellular adrenoceptor distribution in myocardium of spontaneously hypertensive rats. Am. J. Physiol. 253: H904-H908, 1987.
LINDEMANN, J. P.: α -Adrenergic stimulation of sarcolem
- LIMAS, C. J., AND LIMAS, C.: Altered intraceliular adrenoceptor distribution in
myocardium of spontaneously hypertensive rats. Am. J. Physiol. 263: H904-
H908, 1987.
UNDEMANN, J. P.: α -Adrenergic stimulation of sarcolem
- LINDEMANN, J. P.: α -Adrenergic stimulation of sarcolemmal protein phosphor-
ylation and slow responses in intact myocardium. J. Biol. Chem. 261: 4860-
4867, 1986.
LIU, Q. Y., KARPINSKI, E., BENISHIN, C. G., AND PANG, P ylation and slow responses in intact myocardium. J. Biol. Chem. 261: 4860–
4867, 1986.
LIU, Q. Y., KARPINSKI, E., BENISHIN, C. G., AND PANG, P. K. T.: Phenylephrine
increases L-type Ca²⁺ channel current in neonatal rat v
-
-
- increases L-type Ca²⁺ channel current in neonatal rat ventricular cells. Bio-
phys. J. 61: A394, 1992.
LIU, S., PIWNICA-WORMS, D., AND LIEBERMAN, M.: Intracellular pH regulation
in cultured embryonic chick heart cells. N alpha-adrenergic receptors: implication for receptor classification and for structure function relations. Biochim. Biophys. Acta 1095: 127-139, 1991a.
 LOMASINEY, J. W., COTECHIA, S., LORENZ, W., LEVING, W., Y., SCHWINN, Stimulation of sarcomeric actin isogene transcription in hypertrophy of CH, Noise Case, Noise Case, S. O. C. S., ORDALL, C. P., AND SUMBON, P.C.: Alpha,-adrenergic receptor. J. Biol. Chem. 266: 6369, 5991b.
The cultured r
- G.: Molecular cloning and expression of the CDNA for the α_{1A} -adrenergic
receptor. J. Biol. Chem. 266: 6365-6369, 1991b.
LONG, C. S., ORDAHL, C. P., AND SIMPSON, P. C.: Alpha₁-adrenergic receptor
stimulation of sarc
- MALFATTO, G., ROSEN, T. S., STEINBERG, S. F., URSELL, P. C., SUN, L. S., DANIEL, S., DANILO, P., AND ROSEN, M. R.: Sympathetic neural modulation of cardiac impulse initiation and repolarization in the newborn rat. Circ. Re tured rat heart muscle cells. J. Clin. Invest. 83: 1078-1082, 1989.

MALFATTO, G., ROSEN, T. S., STEINBERG, S. F., URSELL, P. C., SUN, L. S.,

DANIEL, S., DANILO, P., AND ROSEN, M. R.: Sympathetic neural modulation

of ca
-
- afterdepolarizations in ventricular myocardial cells: β induction and α modulation. J. Cardiovasc. Electrophysiol. 2: 476-491, 1991.

MARTIN, T. F. J., LEWIS J. E., AND KOWALCHYK, J. A.: Phospholipase C- β 1 is

reg
- MARTINSON, E. A., TRILIVAS, I., AND BROWN, J. H.: Rapid protein kinase C

dependent activation of phospholipase D leads to delayed 1,2-diacyglyceride

accumulation. J. Biol. Chem. 265: 7199-7202, 1990.

MATSUBARA, H., NISH
- secreting atrial natriuretic polypeptides. Am. Heart. J. 113: 1457-1463, 1987.
- 737-764, 1978. secreting atrial natriuretic polypeptides. Am. Heart. J. 113: 1457-1463, 1987.
MCCLELLAN, G. B., AND WINEGRAD, S.: The regulation of the calcium sensitivity
of the contractile system in mammalian cardiac muscle. J. Gen. Ph
-
-
- intracellular pH and Ca³⁺ in isolated mammalian ventricular myocytes. J.

Physiol. (Lond.) 444: 481-498, 1991.

MEIDELL, R. S., SEN, A., HENDERSON, S. A., SLAHETKA, M. F., AND CHIEN, K.

R.: α_1 -Adrenergic stimulatio sis. Am. J. Physiol. 251: H1076-H1084, 1986.
MELJ, J. T. A., BEZSTAROSTI, K., PANAGIA, V., AND LAMERS, J. M. J.: Phorbol
ester and the actions of phosphatidylinositol 4,5-bisphosphate specific phos-
pholipase C and protei
- cardiomyocytes. Mol. Cell. Biochem. 105: 37-47, 1991.
MEU, J. T. A., BORDONI, A., DEKKERS, D. H. W., GUARNIERI, C., AND LAMER.
J. M. J.: Alterations in polyunsaturatyed fatty acid composition of cardia
membrane phospholipi J. M. J.: Alterations in polyunsaturatyed fatty acid composition of cardiac
membrane phospholipids and α_1 adrenoceptor mediated phosphatidylinositol
turnover. Cardiovasc. Res. 24: 94-101, 1990.
MEULEMANS, A. L., ANDEN
-
- **MEULEMANS, A. L., ANDRIES, L. J., AND BRUTSAERT, D. L.: Endocardial endotelelium mediates positive inotropic response to** α_1 **-adreneceptor agonist in mammalian heart. J. Mol. Cell. Cardiol. 22: 667-685, 1990.
MICHEL,** MICHEL, M. C., KNOWLTON, K. U., GROS, G., AND CHIEN, K. R.: α_1 -Adrenergic
receptor subtypes mediate distinct functions in adult rat heart. Circulation
(Suppl.) 82: III561, 1990.
MINNEMAN, K. P.: α_1 -Adrenergic recep
-
-

TERZIC ET AL.

action potential of the rabbit atrium. Naunyn Schmiedebergs Arch. Pharmacol.

325: 47–53, 1984.

inotropic MIURA, Y., INUI, J., AND IMAMURA, H.: α-Adrenoceptor-mediated restoration of

-
- **ET AL.**

action potential of the rabbit atrium. Naunyn Schmiedebergs Arch. Pharmacol.

325: 47-53, 1984.

MIURA, Y., INUI, J., AND IMAMURA, H.: α -Adrenoceptor-mediated restoration of

calcium dependent potential in th calcium dependent potential in the partially depolarized rabbit papillary m
cle. Naunyn Schmiedebergs Arch. Pharmacol. 301: 201-205, 1978.
MOCHLY-ROSEN, D., HENRICH, C. J., CHEEVER, L., KHANER, H., AND SIMPSO
P. C.: A prot
- of and of lithium on the positive increases. L., KHANER, H., AND SIM
P. C.: A protein kinase C isozyme is translocated to cytoskeletal elementivation. Cell Regul. 1: 693-706, 1990.
activation. Cell Regul. 1: 693-706, 1990. P. C.: A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Regul. 1: 693-706, 1990.
activation. Cell Regul. 1: 693-706, 1990.
DLDERINGS, G. J., AND SCHÜMANN, H. J.: Influence of cycloox MOLINRINGS, G. J., AND SCHUMANN, H. J.: Influence of cyclooxygenase inhibitors and of lithium on the positive inotropic effect mediated by α_1 -adrenceptors in guinea-pig left atrium. Naunyn Schmiedebergs Arch. Pharmaco
- tors and of lithium on the positive inotropic effect mediated by α_1 -adrenoceptors in guinea-pig left atrium. Naunyn Schmiedebergs Arch. Pharmacol. 336:
403-408, 1987.
01.NA-VIAMONTE, V., ANYUKHOUSLY, E., AND ROSEN, M. tors in guinea-pig left atrium. Naunyn Schmedebergs Arch. Pharmacol. 336:
403-408, 1987.
MOLINA-VIAMONTE, V., ANYUKHOUSLY, E., AND ROSEN, M.: An α_1 -adrenergic
receptor subtype is responsible for delayed afterdepolariz
- receptor subtype is responsible for delayed afterdepolarization and triggered
activity during ischemia and reperfusion of isolated canine Purkinje fibers.
Circulation 84: 1732-1740, 1991.
MOLINA-VIAMONTE, V., STEINBERG, S. MOLINA-VIAMONTE, V., STEINBERG, S. F., CHOW, Y. K., LEGATO, M. R., ROBINSON R. B., AND ROSEN, M. R.: Phospholipase C modulates automaticity of canine cardiac Purkinje fibers. J. Pharmacol. Exp. Ther. 252: 886-893, 1990.
MO
- ride current in *Xenopus* oocytes. J. Biol. Chem. 267: Ther. 252: 886-893, 1990.
MOORMAN, J. R., PALMER, C. J., JOHN, J. E., III, DURIEUX, M. E., AND JONES,
L. R.: Phospholomman expression induces a hyperpolarization-activ
- OORMAN, J. K., PALMER, C. J., JOHN, J. E., III, DURIEUX, M. E., AND JONES,
L. R.: Phospholemman expression induces a hyperpolarization-activated chlo-
ride current in Xenopus oocytes. J. Biol. Chem. 267: 14551-14554, 1992. L. R.: Phospholemman expression induces a hyperpolarization-activated chloride current in *Xenopus* occytes. J. Biol. Chem. 267: 14551-14554, 1992.
MORANO, I., HOPMANN, F., ZIMMER, M., AND RUEGG, J. C.: The influence of P-
- MORANO, I., HOFMANN, F., ZIMMER, M., AND RUEGG, J. C.: The influence of P-
light chain phosphorylation by myosin light chain kinase on the calcium
sensitivity of chemically skinned heart fibers. FEBS Lett. 189: 221-224, 19
- MOUTON, R., HUISAMEN, B., AND LOCHNER, A.: Increased myocardial inositol
triphosphate levels during α_1 -adrenorgic stimulation and reperfusion of is-
chaemic rat heart. J. Mol. Cell. Cardiol. 23: 841–850, 1981.
MOVSESIA MOVSESIAN, M. A., THOMAS, A. P., SELAK, M., AND WILLIAMSON, J. R.: Inositol
triphosphate does not release Ca²⁺ from permeabilized cardiac myocytes and
sarcoplasmic reticulum. FEBS Lett. 185: 328-332, 1985.
MOGGE, A., RE
-
- MOGGE, A., REUPCKE, C., AND SCHOLZ, H.: α 1-Adrenoceptor density in rats
chronically treated with propranolol. Eur. J. Pharmacol. 112: 249-252, 1985.
MUKHERJEE, A., HAGHANI, Z., BRADY, J., BUSH, L., MCBRIDE, W., BUJA, L
- Receptor numbers in different species. Am. J. Physiol. 245: H947-H961, 1983.
MUNTZ, K. H., GARCIA, C., AND HAGLER, H. K.: α₁. Receptor localization in rat
heart and kidney using autoradiography. Am. J. Physiol. 249: H51
- UNTZ, K. H., GARCIA, C., AND HAGLER, H. K.: α_1 -Receptor localization in rat
heart and kidney using autoradiography. Am. J. Physiol. 249: H512-H519,
1985.
KNAMISHI, T., KAMATA, K., NOJIMA, K., SEGUSHI, M., AND TAKAO, A heart and kidney using autoradiography. Am. J. Physiol. 249: H512-H519,
1985.
NAKANISHI, T., KAMATA, K., NOJIMA, K., SEGUSHI, M., AND TAKAO, A.: Ino-
tropic effect of phenylephrine and myocardial a-adrenergic receptor in n
-
- EXASHIMA, M., MAEDA, K., SEKIYA, A., AND HAGINO, Y.: Effect of hypothyroid
status on myocardial responses to sympathomimetic drugs. Jpn. J. Pharmacol.
21: 819–825, 1971.
NTHAN, D., AND BEELER, G. W.: Electrophysiologic cor **NATHAN, D., AND BEELER, G. W.: Electrophysiologic correlates of the inotropic**
PATHAN, D., AND BEELER, G. W.: Electrophysiologic correlates of the inotropic
effects of isoproterenol in canine myocardium. J. Mol. Cell. Car INTHAN, D., AND BEELER, G. W.: Electrophysiologic correlates of the inotropic effects of isoproterenol in canine myocardium. J. Mol. Cell. Cardiol. 7: 1-15, 1975.
1975.
WARTH, H.: Adrenoceptor-mediated changes of excitatio
-
- effects of isoproterenol in canine myocardium. J. Mol. Cell. Cardiol. 7: 1-15,
1975.
NAWRATH, H.: Adrenoceptor-mediated changes of excitation and contraction in
isolated heart muscle preparation. J. Cardiovasc. Pharmacol. MEDERGERKE, R., AND PAGE, S.: Two physiological agents that appear to facilitate calcium discharge from the sarcoplasmic reticulum in frog heart cells: adrenalin and ATP. Proc. R. Soc. Lond. B 213: 325-344, 1981.
NIEDERGER
-
- Secreting atrial natriuretic polypeptides. Am. J. PHOCELELAN, G. B., AND PAGE, S.: Receptor-controlled calcium discharge in frog MATSUBARA, H., NISHIKAWA, M., UMEDA, Y., TANIGUCHI, T., IWAKASA, T.
MCCLELLAN, G. B., AND HAG facilitate calcium discharge from the sarcoplasmic reticulum in frog heart cells:
adrenalin and ATP. Proc. R. Soc. Lond. B 213: 325-344, 1981.
NIEDERGERKE, R., AND PAGE, S.: Receptor-controlled calcium discharge in frog
he
	- NIEDERGERKE, R., AND PAGE, S.: Receptor-controlled calcium discharge in frog
heart cells. Q. J. Exp. Physiol. 74: 987-1002, 1989.
NOSEK, T. M., WILLIAMS, M. F., ZEIGLER, S. T., AND GODT, R. E.: Inositol
trisphosphate enhan
	-
	-
	- function of cardiac muscle. American of cardiac muscle. American of the matter. Circ Res. 72: 1-6, 1993.
ORCHARD, C. H., AND KENTISH, J. C.: Effects of changes of pH on the contractile function of cardiac nuscle. Am. J. Ph ORCHARD, C. H., AND KENTISH, J. C.: Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258: C967-C981, 1990. O'ROURKE, B.: The Effects of α -Adrenergic Receptor Activation on the Cyto
	-
	- CROURKE, B.: The Effects of a-Adrenergic Receptor Activation on the Cytosolic
Calcium Transient, Contractility and Transmembrane Signalling in Cardiac
Cells. PhD Thesis, Thomas Jefferson University, Philadelphia, PA, 1990. of the Ca²⁺ transient and contraction in single rat cardiomyocytes. J. Mol.
Cell. Cardiol. 24: 809-820, 1992.
OSNES, J.-B., AASS, H., AND SKOMEDAL, T.: On adrenergic regulation of heart
function: role of myocardial *a*-Churchill Livingstone, Edinburgh, Scotland, 1985.
	- OSNES, J. B., AND ØYE, I.:Relationship between cyclic AMP metabolism and inotropic response of perfused rat hearts to phenylephrine and other adrenergic amines. Adv. Cyclic Nucleotide Res. 5: 415–433, 1975. inotropic response of perfused rat hearts to phenylephrine and other adrenergic
amines. Adv. Cyclic Nucleotide Res. 5: 415–433, 1975.
OTANI, H., MITSUYOSHI, H., XUN-TING, Z., OMORI, K., AND INAGAKI, C.:
	- Cardiovascular Disease, ed. by S. H. Refsum and O. D. Mjss, pp. 69-102,
Cardiovascular Disease, ed. by S. H. Refsum and O. D. Mjss, pp. 69-102,
Churchill Livingstone, Edinburgh, Scotland, 1985.
OSNES, J. B., AND ØYE, L:Re charge of perfused rat hearts to phenylephrine and other adrenergic
amines. Adv. Cyclic Nucleotide Res. 5: 415–433, 1975.
NANI, H., MITSUYOSHI, H., XUN-TING, Z., OMORI, K., AND INAGAKI, C.:
Different patterns of protein ki ceptor stimulation and phorbol ester in rat isolated left ventricular papillary muscle. Br. J. Pharmacol. 107: 22-26, 1992.

ARMACOLO

spet

 $\, \mathbb G \,$

- **OTANI, H., OTANI, H., AND DAS, D. H.:** α_1 **-Adrenoceptor mediated phosphoino-sitide breakdown and inotropic response n rat left ventricular papillary muscle.
Circ. Res. 62: 8–17, 1988.** CARDIAC α_1 -AD

sitide breakdown and inotropic response n rat left ventricular papillary muscle.

Circ. Res. 62: 8-17, 1988.

OTANI, H., OTANI, H., URIU, T., HARA, M., INOUE, M., OMORI, K., CRAGOE, E.

J., AND INAGAKI,
- XANI, H., OTANI, H., AND DAS, D. H.: α_1 -Adrenoceptor mediated phosphoino-
sitide breakdown and inotropic response n rat left ventricular papillary muscle.
Circ. Res. 62: 8-17, 1988.
LAI, J., OTANI, H., URIU, T., HARA, exchange on a,-adrenoceptor mediated inotropic Report mediated breakdown and inotropic response in rat left ventricular papillary muscle.
Circ. Res. 62: 8-17, 1988.
J.ANI, H., OTANI, H., URIU, T., HARA, M., INOUE, M., OMO Circ. Res. 62: 8-17, 1988.

OTANI, H., OTANI, H., URIU, T., HARA, M., INOUE, M., OMORI, K., CRAGOE, E.

J., AND INAGAKI, C.: Effects of inhibitors of protein kinase C and Na/H

exchange on α_1 -adtencoceptor mediated int
- J., AND INAGAKI, C.: Effects of inhibitors of protein kinase C and Na/H

J., exchange on α_1 -adrenoceptor mediated inotropic responses in the rat left

ventricular papillary muscle. Br. J. Pharmacol. 100: 207–210, 1990 ventricular papillary muscle. Br. J. Pharmacol. 100: 207-210, 1990.
PACAUD, P., LOIRAND, G., MIRONNEAU, C., AND MIRONNEAU, J.: Opposing
effects of noradrenaline on the two classes of voltage-dependent calcium
channels of s section of nordernaline on the two classes of voltage-dependent calcium
channels of single vascular smooth muscle cells in short term primary culture.
Pflugers Arch. 410: 557-559, 1987.
L.M.ER.: C. J., Scorre, B. J., AND J
- channels of single vascular smooth muscle cells in short term primary culture.
Pflugers Arch. 410: 557-559, 1987.
LMER, C. J., SCOTT, B. J., AND JONES, L. R.: Purification and complete
sequence determination of the major p 266: 11126–11130, 1991.
PAPPANO, A. J.: Propranolol-insensitive effecs of epinephrine on action potential PALMER, C. J., SCOTT, B. J., AND JONES, L. R.: Purification and complete
sequence determination of the major plasma membrane substrate for cAMP
dependent protein kinase and protein kinase C in myocardium J. Biol. Chem.
266
-
- repolarization in electrically driven atria of the guinea pig. J. Physiol. (Lond.)
177: 85–95, 1971.
RNNY, W. J., CULLING, W., LEWIS, M. J., AND SHERIDAN, D. J.: Antiarrhythmic
and electrophysiological effects of α -adr ischemia and reperfusion in isolated guinea-pig hearts. J. Mol. Cell. Cardiol.
- icchemia and reperfusion in isolated guinea-pig hearts. J. Mol. Cell. Cardiol.
17: 399-409, 1985.
PEREZ, D. M., PLASCIK, M. T., AND GRAHAM, R. M.: Solution phase library
screening for the identification of an equalitient o **FREZ, D. M., PIASCIK, M. T., AND GRAHAM, R. M.: Solution phase library screening for the identification of rare clones: isolation of an** α_{1D} **-adrenergic receptor cDNA. Mol. Pharmacol. 40: 876–883, 1991.
OGCIOLI, J., S**
- screening for the identification of rare clones: isolation of an α_{1D} -adrenergic
receptor cDNA. Mol. Pharmacol. 40: 876-883, 1991.
PoGGIOLI, J., SULPICE, J. C., AND VASSORT, G.: Inositol phosphate production
followi
- section, J., Sulpice, J. C., AND VASSORT, G.: Inositol phosphate production following α_1 -adrenorgic, muscarinic or electrical stimulation in isolated ratheart. FEBS Lett. 206: 292-298, 1986.
ISESLER, M. L., LOVELACE, following a₁-adrenergic, muscarinic or electrical stimulation in isolated rat
heart. FEBS Lett. 206: 292-298, 1986.
PRESSLER, M. L., LOVELACE, E., AND BREEN, T. E.: Analysis of amiloride
sensitive H⁺ efflux during a-ad
- assumer, M. L., Lovenace, E., AND BREEN, T. E.: Analysis of amiloride sensitive H^{*} efflux during α -adrenoceptor stimulation of cardiac Purkinje fibers. Biophys. J. 55: 292a, 1989.
independent and the state in the sta H1805, 1990.
- FRIORI, S. G., AND CORR, P. B.: Mechanisms underlying early and delayer afterdepolarizations induced by catecholamines. Am. J. Physiol. 258: H1796-H1805, 1990.

PUCEAT, M., CLEMENT, O., LECHENE, P., PELOSIN, J. M., VENTURA
-
- PUCEAT, M., CLEMENT, O., LECHENE, P., PELOSIN, J. M., VENTURA-CLAPIER,
R., AND VASSORT, G.: Neurohormonal control of calcium sensitivity of myo-
filaments in rat single heart cells. Circ. Res. 67: 517-524, 1990.
PUCEAT, M. PUCEAT, M., HILAL-DANDAN, R., BRUNTON, L. L., AND BROWN, J. H.: Neuro-
hormonal regulation of PKC isozymes in isolated cardiomyocytes (abstract).
Biophys. J., 64: A76, 1993b.
PUCEAT, M., TERZIC, A., CLEMENT, O., SCAMPS, F.
- hormonal regulation of PKC isozymes in isolated cardiomyocytes (abstract).

Biophys. J., 64: A76, 1993b. S

PUCEAT, M., TERZIC, A., CLEMENT, O., SCAMPS, F., VOGEL, S. M., AND VASSORT,

G.: Cardiac α_1 -adrenoceptors med
-
- RAMACHANDRAN, C., ANGELOS, K. L., SIVARAMAKRISHNAN, S., AND WALSH, D.
A.: Regulation of cardiac glycogen synthase. Fed. Proc. 42: 9, 1983.
RAMARAO, C. S., KINCADE DENKER, J. M., PEREZ, D. M., GAIVIN, R. J., RICK,
R. P., AN
- EXERCT CURRENT IN REAL CONDUCES ON A CONSTRAINT CURRENT AND GRAHAN, R. M.: Genomic organization and expression of the human α_{13} -adrenergic receptor. J. Biol. Chem. 267: 21936-21945, 1992.

NUMARAO, U., VANG, X. L., A **REIBEL, D. K., HOLAHAN, M. A., AND HOCK, C. E.: a-Adrenoceptor stimulation**
 REIBEL, D. WANG, X. L., AND WETTWER, E.: a-Adrenoceptor stimulation
 REIBEL, D. K., HOLAHAN, M. A., AND HOCK, C. E.: Effects of dietary fish
- reduces outward currents in rat ventricular myocytes. J. Pharmacol. Exp. Ther.
250: 364-370, 1989.
REIBEL, D. K., HOLAHAN, M. A., AND HOCK, C. E.: Effects of dietary fish oil in
cardiac responsiveness to adrenoceptor stimu **REIBEL, D. K., HOLAHAN, M. A., AND HOCK, C. E.: Effects of dietary fish oil**
cardiac responsiveness to adrenoceptor stimulation. Am. J. Physiol. 25
H494-H499, 1988.
RENARD, D., AND POGGIOLI, J.: Does the inositrol mistetr
-
- RENARD, D., AND POGGIOLI, J.: Does the inositrol mistetrakisphospate pathweist in rat heart? FFBS Lett. 217: 117-123, 1987.
ROKOSH, D. G., AND SULAKHE, P. V.: Characteristics of alpha₁-adrenoceptic coupled to interprise
-
- EXCOBI, D. G., AND SULAKHE, P. V.: Characteristics of alpha₁-adrenoceptors
coupled to inotropic response and phosphoinositide metabolism in rat myocar-
dium. Circulation, 84: II-389, 1991.
ROSEN, M. R., ANYUKHOVSKY, E. A action of cardiac rhythm. News Physiol. Sci. 6: 134-138, 1991.

ROSEN, M. R., HORDOF, A. J., LUENTRO, J. P., AND DANILO, P., JR.: Effects of

adrenergic amines on electrophysiological properties and automaticity of neo-

n
- fective Heart Development, ed. by D. E. Bockman and M. L. Kirby, Vol. 588, pp. 137-144, New York Academy of Science, New York, 1990. mendulation of ventricular pacemaker function. *In* Embryonic Origins of Defective Heart Development, ed. by D. E. Bockman and M. L. Kirby, Vol. 588
pp. 137-144, New York Academy of Science, New York, 1990.
nental changes
- ROSEN, M. R., ROBINSON, R. B., COHEN, I. S., AND BILEZIKIAN J. P.: Developmental changes in alpha-adrenergic modulation of cardiac rhythm. In Physineutral of the Heart Development, ed. by D. E. Bockman and M. L. Kirby, Vol. 588, pp. 137-144, New York Academy of Science, New York, 1990.

DSEN, M. R., ROBINSON, R. B., COHEN, I. S., AND BILEZIKIAN J. P.: Developmental c pp. 137-144, New York Academy of Science, New York, 1990.
ROSEN, M. R., ROBINSON, R. B., COHEN, I. S., AND BILEZIKIAN J. P.: Developmental changes in alpha-adrenergic modulation of cardiac rhythm. In Physiology and Pathoph
- ology and Pathophysiology of the Heart, ed. by N. Sperelakis, pp. 413-422,

Kluwer Academic Publishers, Boston, MA, 1989.

RYVES, W. J., EVANS, A. T., OLIVIER, A. R., PARKR, P. J., AND EVANS, F. J.: SID

Activities. FEBS L **a, a)** a, EVANS, A. T., OLIVIER, A. R., PARKER, P. J., AND EVANS, F. J. Activation of the PKC isotypes α , β , γ , δ , ϵ by phorbol esters of differentical netriures. FEBS Lett. 288: 5-9, 1991.
HIEBINGER R. J.
- biological activities. FEBS Lett. 288: 5-9, 1991.
SCHIERINGER, R. J., PARR, H. G., AND CRAGOE, E. J., JR.: Calcium: its role in α_1 -adrenergic stimulation of atrial natriuretic peptide secretion. Endocrinology
130: 1017
- muscle preparations. Trends Pharmacol. Sci. 8: 447-450, 1987a.

2. HMTZ, W., SCHOLZ, H., AND ERDMANN, E.: Effects of α and agenists, phosphodissterase inhibitors and admosine muscle preparations. Trends Pharmacol. Sci.
- CARDIAC α_1 -ADRENOCEPTORS 173 **CARDIAC** α_1 -ADRENOCEPTORS 173

diated phosphoino-SCHMITZ, W., SCHOLZ, H., SCHOLZ, J., AND STEINFATH, M.: Increase in IP₃

lar papillary muscle. precedes a cadrenoceptor-induced increase in force of contraction in c **ENOCEPTORS**
 **SCHMITZ, W., SCHOLZ, H., SCHOLZ, J., AND STEINFATH, M.: Increase in IP₃

precedes a-adrenoceptor-induced increase in force of contraction in cardiac

muscle. Eur. J. Pharmacol. 140: 109-111, 1987b.

SCHMIT**
	- HMITZ, W., SCHOLZ, H., SCHOLZ, J., AND STEINFATH, M.: Increase in IP
precedes α -adrenoceptor-induced increase in force of contraction in cardia
muscle. Eur. J. Pharmacol. 140: 109-111, 1987b.
J., N., SCHOLZ, H., SCHOLZ muscle. Eur. J. Pharmacol. 14
HMITZ, W., SCHOLZ, H., SCHO
J., AND SCHWABR, U.: Pertus
mediated effect on inositol ph
mediated fifect on inositol ph
macol. 134: 377-378, 1987c.
HOLZ, H., BROCKNER, R., M SCHMITZ, W., SCHOLZ, H., SCHOLZ J., STEINFATH, M., LOHSE, M., PUURUNEN,
J., AND SCHWABE, U.: Pertussis toxin does not inhibit the α_1 -adrenoceptor
mediated effect on inositol phoephate production in the heart. Eur. J. P
	- 87, 1986.
	- **SCHOLZ,** H., **ESCHENHAGEN,** T., **MENDE,** U., **NEUMANN,** J., **SCHMITZ,** W., **AND** macol. 134: 377-378, 1987c.

	SCHOLZ, H., BRÜCKNER, R., MÜGGE, A., AND REUECKE, C.: Myocardial a-

	adrenoceptors and positive inotropy. J. Mol. Cell. Cardiol. 18 (Suppl. 5): 79-

	ST, 1986.

	SCHOLZ, H., EGCHENHAGEN, T., MEND duction, Ionic Channels and Effector Organs, ed. by M. Fujiwara, T. Sugimoto, 87, 1986.
HOLZ, H., ESCHENHAGEN, T., MENDE, U., NEUMANN, J., SCHMITZ, W., AN
STEINPATH, M.: Possible mechanisms of the positive inotropic effect of a
adrenergic receptor stimulation in the heart. In a-Adrenoceptors: Signal adrenergic receptor stimulation in the heart. In a-Adrenocoptors: Signal Trans-
duction, Ionic Channels and Effector Organs, ed. by M. Fujiwara, T. Sugimoto,
and K. Kogure, pp. 101-111, Excerpta Medica, Amsterdam, the Neth
	-
- IMENTY, W. J., CULLING, W., LEWIS, M. J., AND SHERIDAN, D. J.: Antiarrhythmic hyperthermia. Br. J. Anaesth., 66: 692–696, 1991.

and electrophysiological effects of a-adrenoceptor blockade during myocardial SCHOLZ, J., SCH 1992a.
SCHOLZ, J., ROEWER, N., RUM, U., SCHMITZ, W., SCHOLZ, H., AND SCHULTE
AM ESCH, J.: Possible involvement of inositol-lipid metabolism in malignant
hyperthermia. Br. J. Anaesth., 66: 692-696, 1991.
SCHOLZ, J., SCHAEFE
	- SCHOLZ, J., TROLL, U., SANDIG, P., SCHMITZ, W., SCHOLZ, H., AND SCHULTE
AM ESCH, J.: Existence and α_1 -adrenergic stimulation of inositol polyphos-
phates in mammalian heart. Mol. Pharmacol. 42: 134–140, 1992b.
SCHÜMAN matrices in mammalian heart. J.

	Pharmacol. Exp. Ther. 245: 327-335, 1988.

	SCHOLZ, J., TROLL, U., SANDIG, P., SCHMITZ, W., SCHOLZ, H., AND SCHULTE

	AM ESCH, J.: Existence and α_1 -adrenergic stimulation of incestor in t FIGURE HEART LUG SANDIG, P., SCHMITZ, W., SCHOLZ, H., AND SCHULTE
AM ESCH, J.: Existence and α_1 -adrenergic stimulation of inositol polyphos-
phates in mammalian heart. Mol. Pharmacol. 42: 134-140, 1992b.
HOMANN, H. J.
	-
	- AM ESCH, J.: Existence and α_1 -adrenergic stimulation of inositol polyphos-
phates in mammalian heart. Mol. Pharmacol. 42: 134-140, 1992b.
SCHÜMANN, H. J., AND BRODDE, O. E.: Demonstration of α -adrenoceptors in the
r Arch. Pharmacol. 308: 191-198, 1979.
SCHUMANN, H. J., WAGNER, J., KNORR, A., REIDEMEISTER, J. C., SADONY, V.,
AND SCHRAMM, G.: Demonstration in human atrial preparations of *a*-adre-
noceptors mediating positive inotropic
- filaments in rat single bart cells. Circ. Res. 67: 517-524, 1990.

History, Sammacol. 302: 333-336, 1978.

History, M., CRENENT, D., A., LOMENT, D., A., LOMENT, D., A., LOMENT, D., A., LOMENT, J., A., LOMENT, D., A., LOMEN AND SCHRAMM, G.: Demonstration in human atrial preparations of *a*-adre-
noceptors mediating positive inotropic effects. Naunyn Schmiedebergs Arch.
Pharmacol. 302: 333-336, 1978.
HWINN, D. A., LONASNEY, J. W., LORENZ, W.,
	- SCHWINN, D. A., LOMASNEY, J. W., LORENZ, W., SZKLUT, P. J., FREMEAU, R.
T., YANG-FENG, T. L., CARON, M. G., LEFROWITZ, R. J., AND COTECCHIA S.:
Molecular cloning and expression of the cDNA for a novel α_1 -adrenergic
re receptor subtype. J. Biol. Chem. 265: 8183-8189, 1990.
HWINN, D. A., PAGE, S. O., MIDDLETON, J. P., LORENZ, W., LIGETT, S. B., YAMAMOTO, K., LAPETINA, E. G., CARON, M. G., LEFKOWITZ, R. J., AND
COTECCHIA, S.: The α_1 -ad SCHWINN, D. A., PAGE, S. O., MIDDLETON, J. P., LORENZ, W., LIGETT, S. B.,

	YAMAMOTO, K., LAPETINA, E. G., CARON, M. G., LEFKOWITZ, R. J., AND

	COTECCHIA, S.: The α_{1C} -adrenergic receptor characterization of signal tra
	- SEI, C. A., AND GLEMBOTSKI, C. C.: Calcium dependence of phenylephrine, endothelin, and potassium chloride-stimulated atrial factor secretion from long term primary neonatal rat atrial cardiocytes. J. Biol. Chem. 265: 7166
	- factor expression in cardiac mysterial cardiacytes. J. Biol. Chem. 265: 7168-7172, 1990.
1, C. A., IRONS, C. E., SPRENKLE, A. B., MCDONOUGH, P. M., BROWN, J. H., AND GLEMBOTSKI, C. C.: The *a*-adrenergic stimulation of atr SEI, C. A., IRONS, C. E., SPRENKLE, A. B., MCDONOUGH, P. M., BROWN, J. H.,
AND GLEMBOTSKI, C. C.: The α -adrenergic stimulation of atrial natriuretic
factor expression in cardiac myocytes requires calcium influx, protei
	-
	- 1182-1192, 1990.

	SEN, L., LIANG, B. T., COLUCCI, W. S., AND SMITH, T.: Enhanced α_1 -adrenergic

	responsiveness in cardiomyopathic hamster cardiac myocytes. Circ. Res. 67:

	1182-1192, 1990.

	SHAH, A., COHEN, I. S., AND way. Biophysioness in cardiomyopathic hamater cardiac myocytes. Circ. Res. 67:

	1182-1192, 1990.

	SHAH, A., COHEN, I. S., AND ROSEN, M. R.: Stimulation of cardiac α -receptors

	increases Na/K pump current and decreases g SHAH, A., COHEN, I. S., AND ROSEN, M. R.: Stimulation of cardiac *a*-receptors
increases Na/K pump current and decreases g_K via a pertusais-sensitive path-
way. Biophys. J. 54: 219–225, 1988.
SHARMA, V. K., AND SHEU, S.-
	-
	-
	- SHARMA, V. K., AND SHEU, S.-S.: Phorbol ester and diacylglycerol activate Na-
H exchange in rat ventricular myocytes. Biophys. J. 51: 177a, 1987.
SHERIDAN, D. J.: α -Adreneceptor and arrhythmia. J. Mol. Cell. Cardiol. 18 contributions to dysrhythmia during myocardial ischemia and repetual ischemia during myocytes. Biophys. J. 51: 177a, 1987.
IERIDAN, D. J.: a-Adrenoceptor and arrhythmia J. Mol. Cell. Cardiol. 18: 59-68, 1986.
IERIDAN, D. J SHERIDAN, D. J.: α -Adrenoceptor and arrhythmia. J. Mol. Cell. Cardiol. 18: 59-
68, 1986.
SHERIDAN, D. J., PENKOSKE, P. A., SOBEL, B. E., AND CORR, P. R.: α -Adrenergic
contributions to dysrhythmia during myocardial is
	- 68, 1986.

	SHERIDAN, D. J., PENKOSKE, P. A., SOBEL, B. E., AND CORR, P. R.: α -Adrenorgic

	contributions to dysrhythmia during myocardial ischemia and reperfusion in

	cata. J. Clin. Invest. 65: 161–171, 1980.

	SHIBATA,
	- contributions to dyarhythmia during myocardial ischemia and reperfusion in
cats. J. Clin. Invest. 65: 161-171, 1980.
SHIBATA, S., SERIGUCHI, D. G., IWADARE, S., IHIDA, Y., AND SHIBATA, T.: The
regional and species differen dial cells is an aristotic response. J. C., and it is an architectic factor genes by protein kinase C in neonatal rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 89: 1305-1309, 1992.
SIMPSON, P. C.: Norepinephrine-sti
	-
	- request are considered an a-adrenergic response. In about an anyone cytes. Proc. Natl. Acad. Sci. USA 89: 1305-1309, 1992.
MP80N, P. C.: Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells an α_1 -adr SIMPSON, P. C.: Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an α_1 -adrenergic response. J. Clin. Invest. 72: 732-738, 1983.
SIMPSON, P. C.: Stimulation of hypertrophy of cultured neonatal dial cells is an α_1 -adrenergic response. J. Clin. Invest. 72: 732-738, 1983.

	SIMPSON, P. C.: Stimulation of hypertrophy of cultured neonatal heart cells

	through an α -adrenergic receptor interaction. Evidence for i
	-
	- of the growth and beating. Circ. Res. 56: 884-894, 1985.

	SIMPSON, P. C., CURNES, R. G., PANINGBATAN, M. O., AND MURPHY, M. D.: An α_1 -adrenergic receptor subtype sensitive to WB-4101 transduces cardiac myocyte growth. a₁-adrenergic receptor subtype sensitive to WB-4101 transduces cardiac my-
ocyte growth. Circulation 82 (Suppl. III): 561, 1990.
SIMPSON, P. C., KARIYA, K., KARNS, L. R., LONG, C. S., AND KARLINER, J. S.:
Biochem. 104: 3
	-

ARMACOLOGI

- ¹⁷⁴ **TERZIC ET AL. SKOMEDAL, T., AASS, H., AND OSNES, J.-B.: Qualitative differences between the**

interproceptor and its signal transduction in streptozocin-induced

interprojective subsets in the publishing muscles to *a*-adrenoceptor and **TERZIC E**

SKOMEDAL, T., AASS, H., AND OSNES, J.-B.: Qualitative differences between the

inotropic responses in rat papillary muscles to α -adrenoceptor and β -adrenoceptor

ceptor stimulation by both noradrenaline
- ceptor stimulation by both noradrenaline and adrenaline. Acta Pharmacol
Toxicol. 52: 57-67, 1983.
SKOMEDAL, T., AASS, H., AND OSNES, J.-B.: Prazosin-sensitive component of
the intotropic response to norepinephrine in rabbi
- COMEDAL, T., AASS, H., AND OSNES, J.-B.: Prazosin-sensitive component of
the inotropic response to norepinephrine in rabbit heart. J. Pharmacol. Exp.
Ther. 252: 853-858, 1990.
COMEDAL, T., AASS, H., OSNES, J.-B., FJELD, N the inotropic response to norepine
phrine in rabbit heart. J. Pharmacol. Exp.
Ther. 252: 853-858, 1990.
SKOMEDAL, T., AASS, H., OSNES, J.-B., FJELD, N. B., KLINGEN, G., LANGSLET,
A., AND SEMB, G.: Demonstration of an α
- effect of norepinephrine in human atria. J. Pharmacol. Exp. Ther. 233: 441-
446, 1985.
SKOMEDAL, T., SCHIANDER, I. G., HUSOV, E. A., TVEITEN, A., AND OSNES, J.-
B.: Lithium increases the α_1 -adrenoceptor mediated inotr
-
- B.: Lithium increases the α_1 -adrenoceptor mediated inotropic effect in rat
heart. Pharmacol. Toxicol. 68: 88–92, 1991.
SKOMEDAL, T., SCHIANDER, I., AND OSNES, J.-B.: Both α and β -adrenoceptor
mediated component mediated components contribute to final inotropic response to norepinephrine in rat heart. J. Pharmacol. Exp. Ther. 247: 1204-1210, 1988.
SLIVKA, S. R., AND INSEL, P. A.: α_1 -Adrenergic receptor-mediated phosphoino-siti
-
- satide bydrolysis and prostaglandin E_n formation in Madin-Darby kidney cells.
J. Biol. Chem. 262: 4200-4207, 1987.
SLIVKA, S. R., MEIER, K. E., AND INSEL, P. A.: α_1 -Adrenergic receptors promote
phosphatidylcholine h
- **SPRINGHORN, J. P., ELLINGSEN, Ø., C.**, AND ALLEN, D. G.: Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ. Res. 63: 779-787, 1988.
SOLARO, R. J., LEE, J. A., KENTISH, J. C., AND ALLEN, D. G.: Id with a neonatal phenotical phenomenature during the neonatal phenomenon ventricular muscle from adult and neonatal rats. Circ. Res. 63: 779–787, RINGHORN, J. P., ELLINGSEN, Ø., BERGER, H.-J., KELLY, R. A., AND SMITH, T. 1988.

SPRINGHORN, J. P., ELLINGSEN, Ø., BERGER, H.-J., KELLY, R. A., AND SMITH,

T. W.: Transcriptional regulation in cardiac muscle. Coordinate expression of

Id with a neonatal phenotype during development and following
- is and the text incular myocytes in vitro. J. Biol. Chem. 267: 14360

14365, 1992.

14365, 1992. 14365, 1992.

STARKSEN, N. F., SIMPSON, P. C., BISHOPRIC, N., COUGHLIN, S. R., LEE, W.

M. F., ESCOSEDO, J. A., AND WILLIAMS, L. T.: Cardiac myocyte hypertrophy

is associated with c-my protooncogene expression. Proc. Natl
-
- phate accumulation in hypoxic myocytes. Am. J. Physiol., in press, 1993.
TEINBERG, S. F., AND BILEZIKIAN, J. P.: Identification and characterization of α_1 -adrenergic receptors in rat myocardium with a new radioligand
- STEINBERG, S. F., AND BILEZIKIAN, J. P.: Identification and characterization of stimulation on electrophysiological properties and mechanics in rat papillary
 α_1 -adrenergic receptors in rat myocardium with a new radiol α_1 -adrenergic receptors in rat myocardium with a new radioligand $[^{128}I]$ -IBE 2254. J. Mol. Cell. Cardiol. 14: 601-610, 1982.
STEINBERG, S. F., CHOW, Y. K., ROBINSON, R. B., AND BILEZIKIAN, J. P.: A pertussis toxin
- **STEINBERG, S. F., CHOW, Y. K., ROBINSON, R. B., AND BILEZIKIAN, J. P.: A pertussis toxin substrate regulates** α_1 **-adrenergic dependent phosphatidylino-
sitol hydrolysis in cultured rat myocytes. Endocrinology 120: 1889** attol hydrolysis in cultured rat myocytes. Endocrinology 120: 1889-1895, 1987.
STEINBERG, S. F., DRUGGE, E. D., BILEZIKIAN, J. P., AND ROBINSON, R. B.:
Acquisition by innervated cardiac myocytes of a pertussis toxin-speci STEINBERG, S. F., DRUGGE, E. D., BILEZIKIAN, J. P., AND ROBINSON, R. B.:
Acquisition by innervated cardiac myocytes of a pertussis toxin-specific regulatory protein linked to the α_1 -receptor. Science (Wash. DC) 230: 1
-
-
- B.: α_1 -Advenorytes. J. Pharmacol. Exp. Theorix (1.1, Anive Schemer Constitution in
B.: α_1 -Advenorytes. J. Pharmacol. Exp. Ther. 250: 1141-1148, 1989.

STEINFATH, M., CHEN, Y.-Y., LAVICKY, J., MAGNUSSEN, O., NOSE, SWAG, S., SCHMITZ, W., AND SCHOLZ, H.: Cardiac α_1 -adrenoceptor densities
in different mammalian species. Br. J. Pharmacol. 107: 185-188, 1992a.
EINFATH, M., DANIEL-BEN, W., LEYEN, VON DER H., MENDE, U., MEYER, W.,
NEUM in different mammalian species. Br. J. Pharmacol. 107: 185-188, 1992a.
STEINFATH, M., DANIELSEN, W., LEYEN, VON DER H., MENDE, U., MEYER, W.,
NEUMANN, J., NOSE, M., REICH, T., SCHMITZ, W., SCHOLZ, H., STARBATTY,
J., STEIN J., STEIN, B., DORING, V., KALMAR, P., AND HAVERICH, A.: Reduced α_1 - and β_2 - adrenoceptor-mediated positive inotropic effects in human end-stage heart failure. Br. J. Pharmacol. 105: 463-469, 1992b.
STEINKRAUS, V.
-
- β_2 -adrenoceptor-mediated positive inotropic effects in human end-stage heart
failure. Br. J. Pharmacol. 105: 463-469, 1992b.
STEINKRAUS, V., NOSE, M., SCHOLZ, H., AND THORMÄHLEN, K.: Time course
and extent of the $\alpha_$ **Pharmacol. 32: 69-71, 1983.** STRIER, L., AND LEPKOWITZ, I., THE COMENTING STRIERS, G. L., HOPPMAN, B. B., HUBBARD, M., CARON, M. G., AND LEPKOWITZ, R. J.: Guanine nucleotides and α_1 -adrenergic receptors in the heart. STILES, G. L., HOFFMAN, B. B., HUBBARD, M., CARON, M.C., AND LEFKOWITZ,
R. J.: Guanine nucleotides and α_1 -advenergic receptors in the heart. Biochem.
Pharmacol. 32: 69-71, 1983.
STRYER, L., AND BOURNE, H.: G proteins:
-
- SUN, L. S., URSELL, P. C., AND ROBINSON, R. B.: Chronic exposure to neuro-
peptide Y determines cardiac α_1 -adrenergic responsiveness. Am. J. Physiol.
261: H969-H973, 1991.
SUTHERANN, E.: Studies on the mechanism of ho
-
-
- SUTHERLAND, E.: Studies on the mechanism of hormone action. Science (Wash.
DC) 177: 401-408, 1972.
SWYNGHEDAUW, B., AND DELCAYRE, C.: Biology of cardiac overload. Pathobiol.
Ann. 12: 137-183, 1982.
TAKASHI, M., NOROTA, I. SWYNGHEDAUW, B., AND DELCAYRE, C.: Biology of cardiac overload. Pathobiol. WALLERT, M., A., AND FROHLICH, O.: Adrenergic stimulation of Na-H exchange

In cardiac myocytes. Am. J. Physiol. 263: C1096-C1102, 1992.

TAKANIASH
-
- TAMAI, J., HORI, M., KAGIYA, T., IWAKURA, K., KITABATAKE, A., WATANABE, Y., YOSHIDA, H., INOUE, M., AND KAMADA, T.: Role of α_1 -adrenoceptor activity X.J.OSH, L., AND KRANIAS, E. G.: Effect of *a*-adrenergic stimulation on activation of protein kinase C and phosphorylation of proteins in intact rabbit hearts. Varian Mail, J., HOSHIDA, H., MAGYA, T., IWAKURA, K., KITABAT in protein kinase C and phosphorylation of proteins in intact rabbit hearts.
Circ. Res. 70: 670–678, 1992.
MAI, J., HORI, M., KAGIYA, T., IWAKURA, K., KITABATAKE, A., WATANABE,
M., YOSHIDA, H., INOUE, M., AND KAMADA, T.: R Circ. Res. 70: 670–678, 1992.

TAMAI, J., HORI, M., KAGIYA, T., IWAKURA, K., KITABATAKE, A., WATANABE, J. Pharmacol. Exp. Ther. 259: 783–788, 1991.

Y., YOSHIDA, H., INOUE, M., AND KAMADA, T.: Role of α₁-adrenoceptor ac
-

AL.
cardiac α_1 -adrenoceptor and its signal transduction in streptozocin-induced
diabetic rats. Am. J. Physiol. 26: E425-E429, 1992.

- ET AL.

cardiac α_1 -adrenoceptor and its signal transduction in streptozocin-induced

diabetic rats. Am. J. Physiol. 26: E425-E429, 1992.

TAYLOR, C. W.: The role of G-proteins in transmembrane signalling. Biochem.

3.
- diabetic rats. Am. J. Physiol. 26: E425-E429, 1992.
TAYLOR, C. W.: The role of G-proteins in transmembrane signalling. Biochem.
J. 272: 1-13, 1990.
TERMAN, B. I., AND INSEL, P. A.: Photoaffinity labeling of the α_1 -adr
- diabetic rats. Am. J. Physiol. 26: E425-E429, 1992.

TAYLOR, C. W.: The role of G-proteins in transmembrane signalling. Biochem.

J. 272: 1-13, 1990.

TERMAN, B. I., AND INSEL, P. A.: Photoaffinity labeling of the α_1 -
- ILERMAN, B. I., AND INSEL, P. A.: Photocatinuty labeling of the α_1 -adrenergic
Terzic, A.: Cardiotonic and Cardiotoxic Actions of α -Adrenoceptor Agonists:
Possible Role of Na/H Exchange. PhD Thesis, pp. 1–183, The Un Possible Role of Na/H Exchange. PhD Thesis, pp. 1-183, The University of Illinois at Chicago, Chicago, IL, 1990.
 TERZIC, A., ANAGNOSTOPOULOS, T., AND VOGEL, S. M.: Opposite modulation of outabain cardiotoxicity by hexam
-
- value, in cardiotoxicity by hexamethylamiloride and phenylephrine. Naunyn
Schmiedebergs Arch. Pharmacol. 343: 511-518, 1991.
TERZIC, A., PUCEAT, M., CLEMENT, O., SCAMPS, F., AND VASSORT, G.: α_1 -
Adrenergic effects on i Adrenergic effects on intracellular pH and calcium, and on myotilaments is

ingle rat cardiac cells. J. Physiol. (Lond.) 447: 275-292, 1992a.

TERZIC, A., PUCEAT, M., CLEMENT-CHOMIENNE, O., AND VASSORT, G.: Phen

in rat ve
-
- ylephrine and ATP enhance a bicarbonate-dependent alkalinizing mechanism
in rat ventricular single cardiac cells. Naunyn Schmiedebergs Arch. Pharmacol.
TERZIC, A., AND VOGEL, S. M.: Amiloride-sensitive actions of an α agonist and ouabain in rat atria. J. Mol. Cell. Cardiol. 22: 391-402, 1990.

TERZIC, A., AND VOGEL, S. M.: On the mechanism of the positive inotropic

action of the a-adrenoceptor agonist, phenylephrine, in isolated rat le
-
- Fraction of the α-adrenoceptor agonst, pherylephrine, in isolated rat left atria.
J. Pharmacol. Exp. Ther. 257: 520-529, 1991.
TEUTSCH, I., WEIBE, A., AND SIESS, M.: Differential inotropic and chronotropic
effects of vari effects of various protein kinase C activators on isolated guinea-pig atria. Eur.
J. Pharmacol. 144: 363-367, 1987.
THANDROVEN, F. T., FLINT, N. S., WORTHINGTON, M. G., AND OPIE, L. H.:
Arrhythmogenic action of α_1 -adre
- Arrhythmogenic action of α_1 -adrenoceptor stimulation in normoxic rat ven-
tricular myocardium: influence of nisoldipine, reduced extracellular Ca²⁺ and
ryanodine. J. Mol. Cell. Cardiol. 19: 841-851, 1987.
THIELECZEK, THIELECZEK, R., AND HEILMEYER, L. M. G.: Inositol 1,4,5-trisphoshate enhances

Ca²⁺-sensitivity of the contractile mechanism of chemically skinned rabbit

skeletal muscle fibers. Biochem. Biophys. Res. Commun. 135: 662-6
-
- THOMPSON, N. T., BONSER, R. W., AND GARLAND, L. G.: Receptor-coupled
phospholipase D. Trends Pharmacol. Sci. 12: 404-408, 1991.
TOHER, N., HATTORI, Y., NAKAYA, H., AND KANNO, M.: Effects of α -adrenoceptor
stimulation on
-
-
- TOHSE, N., KAMEYAMA, M., AND IRISAWA, H.: Intracellular Ca²⁺ and protein
kinase C modulate K^{*} current in guinea-pig heart cells. Am. J. Physiol. 253:
H1321-H1324, 1987b.
TOHSE, N., NAKAYA, H., HATTORI, Y., ENDOU, M., rat ventricular cells. Pflugers Arch. 415: 575-581, 1990.
TOHSE, N., NAKAYA, H., AND KANNO, M.: α_1 -Adrenoceptor stimulation enhances
the delayed rectifier K^{*} current of guinea-pig ventricular cells through the
activ
-
- TOHSE, N., NAKAYA, H., AND KANNO, M.: α_1 -Adrenoceptor stimulation enhances
the delayed rectifier K⁺ current of guinea-pig ventricular cells through the
activation of protein kinase C. Circ. Res. 71: 1441-1446, 1992.
 H379, 1991. FAUGHAN-JONES, R. D., **EISNER, D. A., AND LEDERER, J.: Effects of currents in single TSENG**, G. N., AND BOYDEN, P. A.: Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am. J. Physi ENG, G. N., AND BOYDEN, P. A.: Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am. J. Physiol., 261: H364-H379, 1991.
H379, 1991.
WCHAN-JONES, R. D., EISNER, D. A., AND LEDERER, J
- **VAUGHAN-JONES, R. D., EISNER, D. A., AND LEDERER, J.: Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers. J. Gen.
Physiol. 899: 1015–1032, 1987.
VTES, M., AND PAPPANO, A.: Inositol 1,4,** VAUGHAN-JONES, R. D., EISNER, D. A., AND LEDERER, J.: Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers. J. Gen. Physiol. 89: 1015-1032, 1987.
VITES, M., AND PAPPANO, A.: Inositol 1,4,5

-
- **Example 102: Pharmacol. 164: 231-239, 1989.**

Physiol. 89: 1015-1032, 1987.

VITES, M., AND PAPPANO, A.: Inositol 1,4,5-trisphosphate releases intracellular

Ca²⁺ in permeabilized chick atria. Am. J. Physiol. 258: H1745 Leaft in permeabilized chick atria. Am. J. Physiol. 258: H1745-H1752, 199
GEL, S. M., AND TERZIC, A.: α -Adrenergic regulation of action potential
isolated rat cardiomyocytes. Eur. J. Pharmacol. 164: 231-239, 1989.
AGNER
- Consumption and Solution of action potentials in
individual cluster and interesting to the consumption of action potentials in
isolated rat cardiomyocytes. Eur. J. Pharmacol. 164: 231-239, 1989.
WAGNER, J., AND BRODDE, O.-C.: Stimulation by adrenaline and dopamine but not by noradrenaline of myocardial *α*-adrenoceptors mediating positive inotropic effects in human atrial preparations. Naunyn Schmiedebergs Arch. Pharmacol. 312: 99-102, WAL
- Ital preparations. Naunyn Schmiedebergs Arch. Pharmacol. 312: 99-102,
1980.
WALD, M., ENRI, S. B., STERIN-BORDA, L.: α -Adrenergic supersensitivity and
decreased number of α -adrenergic stimulation of Na-H exchange
Can in cardiac myocytes. Am. J. Physiol. Physiol. Physiol. Physiol. Physiol. Physiol. 263: 1154–1160, 1988.

WALLERT, M., A., AND FRÖHLICH, O.: Adtrenergic stimulation of Na-H exchange in cardiac myocytes. Am. J. Physiol. 263:
-
- Can. J. Physiol. Pharmacol. 40: 344-1160, 1988.
WALLERT, M., A., AND FRÖHLICH, O.: Adrenergic stimulation of Na-H exchange
in cardiac myocytes. Am. J. Physiol. 263: C1096-C1102, 1992.
WALSH, K. B.: Activation of a heart ch
- intracellular Ca²⁺ transient and contractility in ferret myocardium. Circ. Res.
1. Al. Al. Physiol. 263: C1096-C1102, 1992.
1. Al. Al. Al. Pharmacol. 40: 342-346, 1991.
1. Al. Al. Al. Pharmacol. 40: 342-346, 1991.
1. Al.
- **71:** 631-639, 1992. **WALSH, K. B.: Activation of a heart chloride conductance during stimulation of protein kinase C. Mol. Pharmacol. 40: 342-346, 1991.

WANG, J., AND MORGAN, J. P.: Endothelin reverses the effects of ac** The contractility in ferret myocardium. Circ. Res.

71: 631-639, 1992.

WANG, X. L., WETTWER, E., GROβ, G., AND RAVENS, U.: Reduction of cardiac

outward currents by alpha₁-adrencoceptor stimulation: a subtype specific VANG, X. L., WETTWER, E., GROβ, G., AND RAVENS, U.: Reduction of cardiac outward currents by alpha₁-adrenoceptor stimulation: a subtype specific effect.
J. Pharmacol. Exp. Ther. 259: 783-788, 1991.
WASPE, L. E., ORDAHL,
-
-

ARMACOLO

spet

CARDIAC α₁-ADRENOCEPTORS

HARRIS, R. A.: α-Adrenergic reduction of cyclic adenosine monophosphate WONG, N. L. M., V

concentrations in rat myocardium. Circ. Res. 40: 596-602, 1977.

WATSON, J. E.. AND ΚΑRΜΑΖΥΝ. M.: Co

- CARDIAC α_1 -ADRE

HARRIS, R. A.: α -Adrenergic reduction of cyclic adenosine monophosphate W

concentrations in rat myocardium. Circ. Res. 40: 596–602, 1977.

WATSON, J. E., AND KARMAZYN, M.: Concentration-dependent tility, coronary resistance, energy metabolism, prostacyclin synthesis, and ultrastructure in isolated rat hearts. Circ. Res. 69: 1114-1131, 1991. WEISS, B. A., AND INSEL, P. A.: Intracellular Ca²⁺ and protein kinase C
- tility, coronary resistance, energy metabolism, prostacyclin synthesis, and
ultrastructure in isolated rat hearts. Circ. Res. 69: 1114–1131, 1991.
WEISS, B. A., AND INSEL, P. A.: Intracellular Ca²⁺ and protein kinase C to regulate α_1 -adrenergic and bradykinin receptor-stimulated phospholipase A_z
activation in Madin-Darby canine kidney cells. J. Biol. Chem. 266: 2126-
2133, 1991.
ENZEL, R., AND SU, J. L.: Interactions between sympa
- activation in Madin-Darby canine kidney cells. J. Biol. Chem. 266: 2126-2133, 1991.
WENZEL, R., AND SU, J. L.: Interactions between sympathomimetic amines and blocking agents on the rat ventricle strip. Arch. Int. Pharmaco
- WENZEL, R., AND SU, J. L.: Interactions between sympathomimetic amines and blocking agents on the rat ventricle strip. Arch. Int. Pharmacodyn. 160: 379-389, 1966.
WILDE, A. M., AND KLEBER, A. G.: Effect of norepinephrine a muse, A. M., AND KLEBER, A. G.: Effect of norepinephrine and heart rate on intracellular sodium activity and membrane potential in beating guinea-pig ventricular muscle. Circ. Res. 68: 1482–1489, 1991.
LLIAMS, R. S., AND L
-
- adrenergic receptors: studies in rat myocardium. J. Cardiovasc. Pharmacol. 1:
- tors mediating positive inotropy of rat left atria by use of selective agonists
-
- **ENOCEPTORS** 175

WONG, N. L. M., WONG, E. F. C., AU, G. H., AND HU, D. C. K.: Effect of a-and
 β -adrenergic stimulation on atrial natriuretic peptide release in vitro. Am. J.

Physiol. 255: 260–264, 1988.
- ENOCEPTORS
Wong, N. L. M., Wong, E. F. C., Au, G. H., AND Hu, D. C. K.: Effect of α -and
 β -adrenergic stimulation on a trial natriuretic peptide release in vitro. Am. J.
WooDcock, E. A., TANNER, J. K., FULLERON, M., A isolated cardiomyocytes. Biochem. J. 281: 683-688, 1992.
WooDcock, E. A., TANNER, J. K., FULLERON, M., AND KURAJA, I. S.: Different pathways of inositol phosphate metabolism in intect neonatal rat hearts and isolated cardi **NOODCOCK, E. A., TANNER, J. K., FULLERON, M., AND KURAJA, I. S.: Different** pathways of inositol phosphate metabolism in intact neonatal rat hearts and isolated cardiomyocytes. Biochem. J. 281: 683-688, 1992. WOODCOCK, E.
-
- breakdown and inotropic responses in diabetic hearts. Am. J. Physiol. 260:
Res. 61: 625-631, 1987.
Res. 61: 625-631, 1987.
Am. G. H., Amp McIkel, perfused rat hearts. Circ.
Res. 61: 625-631, 1987.
breakdown and inotropic r H557-H562, 1991. Res. **81**: 625-631, 1987.

XIANG, H., AND MCNEIL, J. H.: α_1 -Adrenoceptor-mediated phosphoinoatide

breakdown and inotropic responses in diabetic hearts. Am. J. Physiol. 260:

H557-H562, 1991.

YUAN, S., SUNAHARA, F. A. ANG, H., AND MCNELL, J. H.: α_1 -Adrenoceptor-mediated phosphoinositide breakdown and inotropic responses in diabetic hearts. Am. J. Physiol. 260: H567-H562, 1991.
 B57-H562 , D68 , D69 , A68 , $\text{A76$
- perfused beating rate heart. Circ. Res. 61: 372-378, 1980. The perfused beating rate heart. Circ. Res. 61: 372-378, 1987.

PUAN, S., SUNAHARA, F. A., AND SEN, A. K.: Tumor-promoting phorbol estern inhibit cardiac functions YUAN, S., SUNAHARA, F. A., AND SEN, A. K.: Tumor-promoting phorbol esters
inhibit cardiac functions and induce redistribution of protein kinase C in
perfused beating rat heart. Circ. Res. 61: 372-378, 1987.
ZAZA, A., KLIN
- intracellular sodium activity and membrane potential in beating guinea-pig
werfused beating rat heart. Circ. Res. 61: 372-378, 1987.
WILLIAMS, R. S., AND LEFKOWITZ, R. J.: Alpha-adrenergic receptors in rat
WILLIAMS, R. S.
	- Circ. Res. 66: 416-426, 1990.

	ZHU, Y., AND NOSEK, T. M.: Inositol trisphoshate enhances Ca²⁺ oscillations but

	not Ca²⁺-induced Ca²⁺ release from cardiac sarcoplasmic reticulum. Pflugers

	Arch. 418: 1-6, 1991.

	ZIE
- and Arch. Mt. LiAMSON, K. L., AND BROADLEY, K. J.: Characterization of the α-adrenocep-
WILLIAMSON, K. L., AND BROADLEY, K. J.: Characterization of the α-adrenocep-
word cardiac contractile proteins: correlations between
 1425, 1989.

21ERHUT, W., AND ZIMMER, H. G.: Significance of myocardial α- and β-adre

21ERHUT, W., AND ZIMMER, H. G.: Significance of myocardial α- and β-adre

1425, 1989.

21MMER, H.-G., LANKAT-BUTTGEREIT, B., KOLBECK-R
	- **T., AND ZIMMER, H. G.: Significance of myocardial** α **and** β **-adre-noceptors in catecholamine-induced cardiac hypertrophy. Circ. Res. 65: 1417-1425, 1989.
MMER, H.-G., LANKAT-BUTTGEREIT, B., KOLBECK-RÜHMKORPP, C., NAG**

HARMACOLOGI